首先我要说的是学习数学模型的意义,说到意义就要说到它的价值,我们知道教育必须反映社会的实际需要,数学建模进入大学课堂,既顺应时代发展的潮流,也符合教育改革的要求。对于数学教育而言,既应该让学生掌握准确快捷的计算方法和严密的逻辑推理,也需要培养学生用数学工具分析解决实际问题的意识和能力,传统的数学教学体系和内容无疑偏重于前者,而开设数学建模课程则是加强后者的一种尝试,数学建模的初衷是为了帮助大家提升分析问题,解决问题的能力。
新一轮的基础教育课程改革经过近几年的实施与推进,新课程的理念已逐步被广大教师接受和认同,在教学实践的不同层面都得到了不同程度的体现与落实。作为课程改革的主阵地和落脚点——课堂教学,却还有或多或少的不尽如人意的地方。所以我们的课堂教学有必要依据新课程理念,建立符合实际的教学模式。反思我们的现在推行的解决问题课堂教学模式,不难发现与新课程改革的要求基本一致,有着诸多优点,主要表现在以下几个方面:
一、借助学生的生活经验,创设和谐课堂。
大量的研究表明,和谐的课堂学习环境可以有效的激发学生的学习兴趣,提高学习效率。在和谐的课堂学习环境中,学生的精神状态自然就会调整到最佳,并能随教师一起很快的进入到学习中来,从而实现课堂的高效。本次建模研讨中的两节均能从学生的生活经验出发,来灵活创设学习情境,激发学生的学习动力,实现了和谐课堂的创建,为下面数学活动的展开做好铺垫。
二、创设学习情境,激发学生参与数学学习的内在动力。
通过本次研讨活动,我深深的感受到:把学生的数学学习活动置身于一定的学习情境之中,把知识的学习寓于情境之中,能最大限度的提高学生的参与度,提高学生的学习效率。在我们推行的这一模式的实施中,能明显的看出教师作为学生学习的组织者、合作者、引领者的教师,能为学生创设一个放飞心灵、获取知识的园地,能在我们的课堂中把学生知识的获取、能力的发展、情感的体验、个性的张扬尽可能的融合到一起,尽可能的激发学生的学习积极性,激发学生学习的兴趣,充分发挥着学生在学习中的主体作用。例如:李艳秋老师执教的《相遇问题》一课中,教师提供的饿“送文件”这一学习情境,学生的就在这一情境中展开数学学习活动,在经历自主探究、合作交流、质疑建构中体验数学学习活动的乐趣,在体验探索中自主获取知识,积累数学活动的经验。
三、提供开放的课堂环境,放手让学生自主学习。
新课程改革倡导我们的数学课堂应该是面向全体学生,强调学生自觉参与的过程,反对以往教师在课堂中的“权威地位”。在这两节研讨课中教师尽可能为学生创设具有接纳性、宽容性的开放课堂,创设具有开放性的学习情境、问题引领等,来促使学生全身心的投入到学习中,让学生真正的做到动眼、动手、动口,实现课堂效率的有效、高效。例如:周宏娟老师执教的《百分数应用三》,让学生拿出课前调查的一个家庭支出情况的相关信息,让学生独立提出问题,自主尝试解决,在这样开放的学习环境中学生是可此不彼,积极参与,课堂的效果亦是很高!
数学建模属于一门应用数学,学习这门课要求我们学会如何将实际问题经过分析、简化转化为个数学问题,然后用适用的数学方法去解决。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并解决实际问题的一种强有力地数学手段。在学习中,我知道了数学建模的过程,其过程如下:
(1)模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数
学语言来描述问题。
(2)模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确地语言提出一些恰当的假设。
(3)模型建立:在假设的基础上,利用适当的数学工具来刻画各变量之间的数学关系,建立相应的数学结构。
(4)模型求解:利用或取得的数据资料,对模型的所有参数做出计算。
(5)模型分析:对所得的结果进行数学上的分析。
(6)模型检验:将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次进行建模过程。
在学习了数学模型后,它所教给我们的不单是一些数学方面的知识,比如说一些数学计算软件,学习建模的同时,借用各种建模软件解决问题是必不可少的Matlab,Lingo,等都是非常方便的。数学模型是数学学习的新的方式,他为我们提供了自主学习的空间,有助于我们体验数学在解决实际问题中的价值和作用,体验数学与日常生化和其他学科的联系,体验综合运用知识和方法解决实际问题的过程,增强应用意识;而且数学模型还对我们有综合能力的培养、锻炼与提高。它培养了我们全面、多角度考虑问题的能力,使我们的逻辑推理能力和量化分析能力得到很好地锻炼和提高。而且我认为数学模型带给我的是发散性思维,各种研究方法和手段。教会我凡事要有自己的创新,自己的严密思维,不能局限于俗套。总之学习数学模型有利于激发我们的学习数学的兴趣,丰富我们学习数学探索的情感体验;有利于我们自觉体验、巩固所学的的数学知识。还锻炼了我们的耐心和意志力。
总之,数学已经成为当代高科技的一个重要组成部分和思想库,培养学生应用数学的意识和能力也已经成为数学教学的一个重要方面。而应用数学去解决各类实际问题就必须建立数学模型。中学数学教学的过程其实就是教师引导学生不断建模和用模的过程。因此,用建模思想指导中学数学教学显得愈发重要。
数学建模论文也有固定的结构,其中包括摘要、问题重述与分析、问题假设、符号说明、模型建立与求解、模型检验、结果分析、模型的进一步讨论、模型优缺点等一系列的步骤。与此同时数学建摸论文的模块设计也有固定的格式,问题的背景、问题的重述、基本假设与符号说明、问题的分析与模型的准备、模型的建立、模型的求解、模型的检验、模型的灵敏度与稳定性分析、模型的科学性及现实意义、模型的使用说明、模型的进一步讨论与改进、模型评价与推广、写给__的意见、参考文献、附录等。紧接着老师又给我们讲述了数学建模论文的一系列写作技巧,让我获益匪浅。
数学建模中常用算法有很多种,1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)2、数据拟合\参数估计\插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)3、线性规划\整数规划\多元规划\二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)5、动态规划\回溯搜索\分治算法\分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)
6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)
8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理)
但是数学建模到底是什么样子的,举几个例子:例子一:三个学生住旅馆,服务员收费30元,于是三个学生每人交了10元。后来老板对服务员说当天特价,只用收25元,要服务员把多的5元退给三人。爱贪小便宜的服务员想:“5元给三个人也不好分,自己留下2元,给他们一人一元正好。”于是,服务员退还了学生3元并私吞了2元。现在的结果是:每个学生只出了9元,一共27元,加上服务员的2元,才29元。剩下的1元钱哪里去了?我们先从最易理解的角度考虑,三位顾客付了30英镑,其中25英镑是餐费,3英镑是找头,2英镑是小费。于是„„这个等式完全成立,并且不存在丢失钱的问题。但这种分析却不能打消困惑者的疑惑。27-2=25.这是个有意义的加法公式,27+2=29,纯属不三不四的胡扯,用来混淆视听,迷惑人。只是由于结果及其接近30,从而使人相信这两个数字是有着紧密连续的,实际上这个式子没有任何意义。
自从大二下学期真正开了数学模型这一门课之后,我对数学认识又进一步加深。虽然我是学纯数学即数学与应用数学,但是在我的认知中,数学最多的是单纯地证明一些定理抑或是反复的计算一些步骤比较多的题进而求解。随着老师在课堂上一点一点的引导、介绍、讲解,我渐渐地发现数学真的是很万能啊(在我看来),任何实际问题只要运用数学建立模型都可以抽象成一个数学方面的问题,进而单纯的分析、计算、求解。这只是我大体的认识。
首先,通过数学模型这一门课我解开了数学模型的神秘面纱,与数学模型紧密相连的就是数学建模,简而言之来说数学建模就是应用数学模型来解决各种实际问题的过程,也就是通过对实际问题的抽象、简化、确定变量和参数,并应用某些规律建立变量与参数之间的关系的数学问题(或称一个数学模型),在借用计算机求解该数学问题,并解释,检验,评价所得的解,从而确定能否将其用于解决实际问题的多次循环,不断深化的过程。
以下是我学习数学模型的一些心得:
第一,数学模型是数学的一个分支,它还没有脱离数学,众所周知数学是一门比较抽象的课程,主要需要和训练的还是逻辑思维。因此数学模型需要和训练的都基本是思维,但和纯数学区别的是数学模型只要抽象出数学问题的本质,进而建模,那之后不是非得自己一步步地演算、求解。
第二,数学模型最后的求解很多时候都不可避免地要用到计算机,比如像matlab,spss,linggo之类的数学软件。因此在学习过程中我们也得对这些软件有一定的了解和认识。这也就与平常的学习方式产生了区别,平常的数学方式因为其内容和讲授被限制在了平常的阶梯教室,但数学模型这一门课就必须通过自己的实践运用计算机来达到自己的目的。因此我们的学习方式就多了一项(通过计算机进一步了解数学模型的魅力)。
第三,因为数学模型是对现实问题的分析,因此老师在课堂上进行的授课通常会是老师引导、师生之间相互商量,因此课堂氛围一般都比较活泼,学习起来会相对的比较轻松。这样对学生的思维的开拓有很大的好处。因为我们在生活和学习的过程中都接触过很多问题的数学问题的模型,所以思考其整个过程及其影响因素就不会出现无从下手的感觉。相反的,在考虑问题的时候,我们更能提出自己的一些见解并能积极地与老师展开讨论。
第四,数学模型充分挖掘了我们的潜能,使我们对自己的能力有了新的认识,特别是自学能力得到了极大的提高,而且思想的交锋也迸发了智慧的火花,从而增加了继续深入学习数学的主动性和积极性。再次,它也培养了我们的概括力和想象力,也就是要一眼就能抓住问题的本质所在。我们只有先对实际问题进行概括归纳,同时在允许的情况下尽量忽略各种次要因素,仅仅抓住问题的本质方面,是问题尽可能简单化,这样才能解决问题。
第五,说到数学模型就必不可免得会联系到数学建模大赛。因为教育必须适应社会的需要,数学建模进入大学课堂,既顺应时代发展的潮流,也符合教育改革的需求,对于数学教育而言,既应该让学生掌握准确快捷的计算方法和严密的逻辑推理,也需要培养学生用数学工具分析和解决实际问题的意识和能力。数学建模大赛就是顺应这一要求,此外,数学建模还可以提高学生的竞赛能力,抗压能力,问题设计的能力,搜索资料的能力,计算机运用能力,论文写作与修改完善能力,语言表达能力,创新能力等科学综合素养。
第六,虽然我没参加过数学建模大赛,但是我曾去过数学建模的培训课程,通过老师的介绍,我知道数学建模对团队合作要求很高。一个人的能力毕竟有限,不能把什么都做得很好,即使少数人能方方面面都顾全到,那得多么的累,况且真正的数学建模大赛是对时间有限制的,不会让你不限时地让你做。正所谓‘三个臭皮匠,胜过诸葛亮’,可见思想与思想之间的交流产生的结果是多么的好,此外,每个人因为所处环境与经历还有专业的限制,每个人思考问题的角度都不尽相同。所以集结每个人的优点才会使自己的团队所做出来的结果更优秀。
以上只是我在这短短几个月对数学模型的浅显的认识,不用说大家肯定都只道数学模型更像是一个工具,所以说它的魅力作用及影响肯定不会仅仅是这些,有时现实生活中及各个学科都需要它来解决问题,所以这更要求我们要认真学好这门课。
通过上课我也有一点建议,就是希望老师可以让同学们结成小组再在课上可以讨论某几道题,这样可以加强同学们在这方面的能力,也可以提高课堂氛围。
这学期参加数学建模培训,使我感触良多:它所教给我们的不单是一些数学方面的知识,更多的其实是综合能力的培养、锻炼与提高。它培养了我们全面、多角度考虑问题的能力,使我们的逻辑推理能力和量化分析能力得到很好的锻炼和提高。它还让我了解了多种数学软件,以及运用数学软件对模型进行求解。
数学模型主要是将现实对象的信息加以翻译,归纳的产物。通过对数学模型的假设、求解、验证,得到数学上的解答,再经过翻译回到现实对象,给出分析、决策的结果。其实,数学建模对我们来说并不陌生,在我们的日常生活和工作中,经常会用到有关建模的概念。例如,我们平时出远门,会考虑一下出行的路线,以达到既快速又经济的目的;一些厂长经理为了获得更大的利润,往往会策划出一个合理安排生产和销售的最优方案„„这些问题和建模都有着很大的联系。而在学习数学建模训练以前,我们面对这些问题时,解决它的方法往往是一种习惯性的思维方式,只知道该这样做,却不很清楚为什么会这样做,现在,我们这种陈旧的思考方式己经在被数学建模训练中培养出的多角度、层次分明、从本质上区分问题的新颖多维的思考方式所替代。这种凝聚了许多优秀方法为一体的思考方式一旦被你把握,它就转化成了你自身的素质,不仅在你以后的学习工作中继续发挥作用,也为你的成长道路印下了闪亮的一页。
数学建模所要解决的问题决不是单一学科问题,它除了要求我们有扎实的数学知识外,还需要我们不停地去学习和查阅资料,除了我们要学习许多数学分支问题外,还要了解工厂生产、经济投资、保险事业等方面的知识,这些知识决不是任何专业中都能涉猎得到的。它能极大地拓宽和丰富我们的内涵,让我们感到了知识的重要性,也领悟到了“学习是不断发现真理的过程”这句话的真谛所在,这些知识必将为我们将来的学习工作打下坚实的基础。从现在我们的学习来看,我们都是直接受益者。就拿我此次学习数学建模后写论文。原本以为这是一件很简单的事,但做起来才发觉事情并没有想象中的简单。因为要解决问题,凭我们现有的知识根本不够。于是,自己必须要充分利用图书馆和网络的作用,查阅各种有关资料,以尽量获得比较全面的知识和信息。在这过程中,对自己眼界的开阔,知识的扩展无疑大有好处,各学科的交叉渗透更有利于自己提高解决复杂问题的能力。毫不夸张的说,建模过程挖掘了我们的潜能,使我们对自己的能力有了新的认识,特别是自学能力得到了极大的提高,而且思想的交锋也迸发出了智慧的火花,从而增加了继续深入学习数学的主动性和积极性。再次,数学建模也培养了我们的概括力和想象力,也就是要一眼就能抓住问题的本质所在。我们只有先对实际问题进行概括归纳,同时在允许的情况下尽量忽略各种次要因素,紧紧抓住问题的本质方面,使问题尽可能简单化,这样才能解决问题。其实,在我们做论文之前,考虑到的因素有很多,如果把这一系列因数都考虑的话,将会花费更多的时间和精神。因此,在我们考虑一些因素并不是本质问题的时候,我就将这些因数做了假设以及在模型的推广时才考虑。这就使模型更加合理和理想。数学建模还能增强我们的抽象能力以及想象力。对实际问题再进行“翻译”,即进行抽象,要用我们熟悉的数学语言、数学符号和数学公式将它们准确的表达出来。
通过学习数学建模训练,对我的收益不逊于以前所学的文化知识,使我终生难忘。而且, 我觉得数学建模活动本身就是教学方法改革的一种探索,它打破常规的那种老师台上讲,学生听,一味钻研课本的传统模式,而采取提出问题,课堂讨论,带着问题去学习、不固定于基本教材,不拘泥于某种方法,激发学生的多种思维,增强其学习主动性,培养学生独立思考,积极思维的特性,这样有利于学生根据自己的特点把握所学知识,形成自己的学习机制,逐步培养很强的自学能力和分析、解决新问题的能力。这对于我们以后所从事的教育工作也是一个很好的启发。
总之,“一份耕耘,一份收获”。作为一名对数学有着浓厚兴趣的学生,我深刻地感到了自己在程序的编制和软件应用以及自学能力,有了很大的提高,并将对我今后的专业学习有很大的帮助。想到这里,我不由得被老师的良苦用心所感动,为我们创造了如此优越的学习条件,处处为学子着想。因此,在今后的学习中,我会保持这种学习的劲头,刻苦努力,争取以更优异的成绩。
随着科学技术的飞速发展,人们越来越认识到数学科学的重要性:数学的思考方式具有根本的重要性,数学为组织和构造知识提供了方法,将它用于技术时能使科学家和工程师生产出系统的、能复制的、且可以传播的知识„„数学科学对于经济竞争是必不可少的,数学科学是一种关键性的、普遍的、可实行的技术.
在当今高科技与计算机技术日新月异且日益普及的社会里,高新技术的发展离不开数学的支持,没有良好的数学素养已无法实现工程技术的创新与突破。因此,如何在数学教育的过程中培养人们的数学素养,让人们学会用数学的知识与方法去处理实际问题,值得数学工作者的思考。 大学生数学建模活动及全国大学生数学建模竞赛正是在这种形势下开展并发展起来的,其目的在于激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,拓宽学生的知识面,培养创造精神及合作意识,推动大学数学教学体系、教学内容和教学方法的改革.
这项极富意义的活动,大学组队参加了全国大学生数学建模竞赛。为了更好地组织、指导此项活动,让更多的学生投入此项活动并从中受益,学生根据组织与指导的实践,对数学建模活动的作用与实施谈一些认识,以期起到深化数学教学改革、推动课程建设的作用。方法,去近似刻画、建立相应数学模型并加以解决的过程。为检验大学生数学建模的能力,而我国大学生数学建模竞赛。参加过数学建模活动的教师与学生普遍反映,数学建模活动既丰富了学生的课外生活,又培养了学生各方面的能力,同时也促进了大学数学教学的改革。通过数学建模活动,教师与学生对数学的作用有了进一步的认识。激发学生学习数学的兴趣。 现今大学工科数学教学普遍存在内容多、学时少的情况,为此很多教师采取了牺牲应用、偏重理论讲解以完成教学进度的方法,使学生对数学的重要性认识不够,影响了学生学习数学的兴趣,很多学生进入专业课学习阶段才感觉到数学的重要,但为时已晚。
数学建模活动及竞赛的题目是社会、经济和生产实践中经过适当简化的实际问题,体现了数学应用的广泛性;学生参与数学建模及竞赛活动,感受到了数学的生机与活力,感受到了对自己各方面能力的促进,从而激发起他们学习数学的兴趣。培养学生多方面的能力,培养综合应用数学知识及方法进行分析、推理、计算的能力。由于数学建模的过程是反复应用数学知识与方法对实际问题进行分析、推理与计算,以得出实际问题的最佳数学模型及模型最优解的过程,因而学生明显感到自己这一方面的能力在具体的建模过程中得到了较大提高。
数学建模就是当人们面对各种实际问题时,根据人们对问题的理解,完成对模型的假设,建立和确定求解问题的方法与途径,然后建立好方程组,然后再与计算机的软件相结合,最终得到该实际问题的最佳求解答案。
以前在高中时学过些简单的线形规划,但那时都是些简单的问题,在列解出方程后通常只有两个未知数,但这明显不符合现实生活中的问题,因为往往涉及到一些实际生产问题时通常都是比较麻烦的,列出方程后的未知数也不可能只有两个,因此就要用到数学模型与计算机相结合来处理了。
通过对数学建模的学习,使得我对数学有了全新的看法,也因此感觉到数学这门课程对于生产的利益是密不可分的,开展数学建模的学习是提升我们综合能力的好机会,使得我们不再是纸上谈兵了,并且也使得我们又多了一门技能。数学建模所解决的问题不是一个单一的数学问题,它要求我们除了有扎实的数学功底外,还需要我们去不断的查阅资料,并且还要能熟练的应用计算机的软件。所以它能极大的拓宽我们的知识面,这些知识也能为我们将来的工作打下坚实的基础,也让我理会到学习是不断发现真理的过程,并且它给我们带来的知识面不是任何专业都能涉及到的.在学习数学建模的过程中,我充分的体会到了数学给人们带便利实在太大了,在涉及到现实的工业生产中,它能给企业的利益最大化,并且也能节省国内的能源,所以人类要是离开了数学建模,那后果真是不堪设想。其实数学建模对于我们并不陌生,在我们的日常生活和工作中,经常会用到有关建模的概念,而在学习数学建模以前,我们面对这些问题时,解决它的方法往往是一种习惯性的思维方式,只知道要这样做,却不知道为什么会这样做,现在我们这种陈旧的思考方式已经被数学建模转化成多层次,多角度的从问题的本质出发的 一种新颖的思维方式了,这种凝聚了多种优秀方法为一体的思考方式一旦被掌握了,它能转化成你自身的素质,并且能在你以后的生活和工作中继续发挥着作用的。
数学建模是一种运用数学符号,数学式子,计算机程序等相结合的对实际问题做出规划而得出最佳的解决方法。不论是用数学方法解决在科技和生产领域解决哪类生产实际问题,还是与其他学科相结合形成交叉学科,首先和关键一步是建立研究对象的数学模型,并加以计算求解,我 就简单说明一下具体的操作方法:首先是模型的准备,了解问题的实际背景,明确其实际意义,掌握对像的各种信息,用数学语言来描述问题。第二步是模型的假设,根据实际问题的特征和建模的目的,对问题做出必要的简化,并用精准的语言做出恰当的假设。第三步是模型的建立,在假设的基础上,用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学架构。第四步是模型的求解,利用获取的数学资料,对模型所有参数做出计算。第五步是模型的分析,对所得的结果做出数学上的分析。第六步是模型检测,将模型的分析结果与实际情况进行比较,以此来确定模型的合理性,如果模型与实际比较吻合,则要对计算结果给出其实际含义,并做书解释。第七步是模型应用,应用的方式因问题的性质和建模的目的而异。
在一般的工程技术领域,数学建模仍然大有用武之地,因此数学建模的普遍性和重要性不言而喻,由于新工业和新技术的不断涌现,提出了许多需要用数学建模来解决的问题,因此使得许多的问题迎刃而解,建立数学建模和计算机的软件,大量的代替了以前的复杂的计算问题。随着数学向这储如经济了等领域进行渗透,人们在计算如何使得经济利益最大化 时,数学建模毫无疑问在这里面发挥出巨大的作用,当用数学方法研究这些领域中的定量关系时,数学建模就成为首要的。数学建模过程是一种创新过程,在思考方法和思维方式上与学习其他课程有着较大的区别,它需要我们在学习时能冷静的单独思考,并且要有一定的分析问题的能力。
我相信随着科技的不断创新发展,数学建模在其中的地位会越来越高,所以对于一个大学生来说,学好数学建模固然是非常重要的。
以前在大一时就曾听说过数学建模这一学科,但只是很肤浅的了解,还错误的以为这门学科只是跟数学有关系,只要数学学好了,学好数学建模就轻而易举了。因为自己数学一直很好,对数学建模很感兴趣,也很自信,于是,大二时毫无疑问地选修了数学建模这门专业选修课,但是选择了以后才发现根本不像自己想象的那样简单。选修课时,对数学建模有了进一步了解,数学建模主要包括三大部分的内容:统计,优化,微分和差分。但是这也只是表面上的了解而已,上课老师只针对某一部分,告诉你要针对这一部分具体该怎么做,只是一种固定的模式,没有自己的任何建模思想。
百度上对数学建模的定义是这样子的:当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个建立数学模型的全过程就称为数学建模。不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解。数学建模和计算机技术在知识经济时代的作用可谓是如虎添翼。
数学建模是一种模拟,是用数学符号、数学式子、程序、图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模数学建模数学建模数学建模。
经过了这段时间对数学建模的学习,我终于对数学建模有了进一步的认识,数学建模是一个经历观察、思考、归类、抽象与总结的过程,也是一个信息捕捉、筛选、整理的过程,更是一个思想与方法的产生与选择的过程。它给我们再现了一种“微型科研”的过程。它激发我们学习数学的兴趣,丰富了数学探索的情感体验;有利于我们自觉检验、巩固所学的数学知识,促进知识的深化、发展;有利于我们体会和感悟数学思想方法。
记得第一节课时,老师给我们解释什么是数学建模,老师举了一个简单的例子,“问题:树上有十只鸟,开枪打死一只,还剩几只?”,当时我们都觉得很奇怪,这问题很高深吗?这和数学建模有什么关系吗?紧接着老师就给我们解释了这道题,“是无声手枪或别的无声的枪吗?不是。枪声有多大?80—100分贝。那就是说会震得耳朵疼?是。在这个城市里打鸟犯不犯法?不犯。您确定鸟里真的没有聋子?没有。有没有关在笼子里的?没有。边上还有没有其他的树,树上还有没有其他的鸟?没有有没有残疾的鸟或饿得飞不动的鸟?没有。打鸟的人眼有没有花?保证是十只?没有花,就十只。有没有傻得不怕死的鸟?都怕死。会不会一枪打死两只?不会。所有的鸟都可以自由活动吗?完全可以。如果您的回答没有骗人,打死的鸟要是挂在是挂在树上没掉下来,那么就剩一只,若果掉下来,就一只不剩。”这就是数学建模。从不同度思考一个问题,想尽所有的可能,正所谓智者千虑,绝无一失,这才是数学建模的高手。然后,老师讲了数学建模能力的培养与提升,让我们感觉到,原来学好数学建模并不是一件简单的事靠的是分析题意的能力、查找资料的能力、建立数学模型的能力、问题的转化能力、现学现用的能力、编程能力、论文写作能力等多方面的能力。
这学期,我学习了数学建模这门课,我觉得他与其他科的不同是与现实联系密切,而且能引导我们把以前学得到的枯燥的数学知识应用到实际问题中去,用建模的思想、方法来解决实际问题,很神奇,而且也接触了一些计算机软件,使问题求解很快就出了答案。
在学习的过程中,我获得了很多知识,对我有非常大的提高。同时我有了一些感想和体会。
本来在学习数学的过程中就遇到过很多困难,感觉很枯燥,很难学,概念抽象、逻辑严密等等,所以我的学习积极性慢慢就降低了,而且不知道学了要怎么用,不知道现实生活中哪里到。通过学习了数学模型中的好多模型后,我发现数学应用的广泛性。数学模型是一种模拟,使用数学符号、数学式子、程序、图形等对实际课题本质属性的抽象而又简洁的刻画,他或能解释默写客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模。不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其他学科相结合形成的交叉学科,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解。数学建模和计算机技术在知识经济的作用可谓是如虎添翼。
数学建模属于一门应用数学,学习这门课要求我们学会如何将实际问题经过分析、简化转化为个数学问题,然后用适用的数学方法去解决。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并解决实际问题的一种强有力地数学手段。在学习中,我知道了数学建模的过程,其过程如下:
(1)模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数学语言来描述问题。
(2)模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确地语言提出一些恰当的假设。
(3)模型建立:在假设的基础上,利用适当的数学工具来刻画各变量之间的数学关系,建立相应的数学结构。
(4)模型求解:利用或取得的数据资料,对模型的所有参数做出计算。
(5)模型分析:对所得的结果进行数学上的分析。
(6)模型检验:将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次进行建模过程。
数学模型既顺应时代发展的潮流,也符合教育改革的要求。对于数学教育而言,既应该让学生掌握准确快捷的计算方法和严密的逻辑推理,也需要培养学生用数学工具分析解决实际问题的意识和能力,传统的数学教学体系和内容无疑偏重于前者,而开设数学建模课程则是加强后者的一种尝试,数学建模的初衷是为了帮助大家提升分析问题,解决问题的能力。 我认为学习数学模型的意义有如下几点:一 学习数学模型我们可以参加数学建模竞赛,而数学建模竞赛是为了促进数学建模的发展而应运而生的,它可以培养大家的竞赛能力、抗压能力、问题设计能力、搜索资料的能力、计算机运用能力、论文写作与修改完善能力、语言表达能力、创新能力等科学综合素养,它让大家从传统的知识培养转变到能力的培养,让我们的思想追求有了质的变化!这也是我们现代教育所追求的;二 学习数学可以提升我的逻辑思维能力和运算等抽象能力,但好多人觉得数学和实际遥不可及,可是呢,数学建模则成为了解决这种现象的杀手锏,因为数学建模就是为了培养大家的分析问题和分解决问题的能力。
在学习了数学模型后,它所教给我们的不单是一些数学方面的知识,比如说一些数学计算软件,学习建模的同时,借用各种建模软件解决问题是必不可少的Matlab,Lingo,等都是非常方便的。数学模型是数学学习的新的方式,他为我们提供了自主学习的空间,有助于我们体验数学在解决实际问题中的价值和作用,体验数学与日常生化和其他学科的联系,体验综合运用知识和方法解决实际问题的过程,增强应用意识;而且数学模型还对我们有综合能力的培养、锻炼与提高。它培养了我们全面、多角度考虑问题的能力,使我们的逻辑推理能力和量化分析能力得到很好地锻炼和提高。而且我认为数学模型带给我的是发散性思维,各种研究方法和手段。教会我凡事要有自己的创新,自己的严密思维,不能局限于俗套。总之学习数学模型有利于激发我们的学习数学的兴趣,丰富我们学习数学探索的情感体验;有利于我们自觉体验、巩固所学的的数学知识。还锻炼了我们的耐心和意志力。