免费高一数学教案

| 新华0

编写教案有助于更好地满足学生的学习需求,提高学生的学习效果。要怎么写免费高一数学教案呢?下面给大家分享一些免费高一数学教案,供大家参考。

免费高一数学教案篇1

一、教材分析

(一)地位与作用

数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面数列作为一种特殊的函数与函数思想密不可分;另一方面学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。

(二)学情分析

(1)学生已熟练掌握_________________。

(2)学生的知识经验较为丰富,具备了教强的抽象思维能力和演绎推理能力。

(3)学生思维活泼,积极性高,已初步形成对数学问题的合作探究能力。

(4)学生层次参次不齐,个体差异比较明显。

二、目标分析

新课标指出“三维目标”是一个密切联系的有机整体,应该以获得知识与技能的过程,同时成为学会学习和正确价值观。这要求我们在教学中以知识技能的培养为主线,透情感态度与价值观,并把这两者充分体现在教学过程中,新课标指出教学的主体是学生,因此目标的制定和设计必须从学生的角度出发,根据____在教材内容中的地位与作用,结合学情分析,本节课教学应实现如下教学目标:

(一)教学目标

(1)知识与技能

使学生理解函数单调性的概念,初步掌握判别函数单调性的方法;。

(2)过程与方法

引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力。

(3)情感态度与价值观

在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。

(二)重点难点

本节课的教学重点是________________________,教学难点是_____________________。

三、教法、学法分析

(一)教法

基于本节课的内容特点和学生的年龄特征,按照__市高中数学“三五四”课堂教学策略,采用探究――体验教学法为主来完成教学,为了实现本节课的教学目标,在教法上我采取了:

1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性.

2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念.

3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达.

(二)学法

在学法上我重视了:

1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃。

2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力。

免费高一数学教案篇2

1、知识与技能

(1)掌握任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);

(2)理解任意角的三角函数不同的定义方法;

(3)了解如何利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来;

(4)掌握并能初步运用公式一;

(5)树立映射观点,正确理解三角函数是以实数为自变量的函数.

2、过程与方法

初中学过:锐角三角函数就是以锐角为自变量,以比值为函数值的函数.引导学生把这个定义推广到任意角,通过单位圆和角的终边,探讨任意角的三角函数值的求法,最终得到任意角三角函数的定义.根据角终边所在位置不同,分别探讨各三角函数的定义域以及这三种函数的值在各象限的符号.最后主要是借助有向线段进一步认识三角函数.讲解例题,总结方法,巩固练习.

3、情态与价值

任意角的三角函数可以有不同的定义方法,而且各种定义都有自己的特点.过去习惯于用角的终边上点的坐标的“比值”来定义,这种定义方法能够表现出从锐角三角函数到任意角的三角函数的推广,有利于引导学生从自己已有认知基础出发学习三角函数,但它对准确把握三角函数的本质有一定的不利影响,“从角的集合到比值的集合”的对应关系与学生熟悉的一般函数概念中的“数集到数集”的对应关系有冲突,而且“比值”需要通过运算才能得到,这与函数值是一个确定的实数也有不同,这些都会影响学生对三角函数概念的理解.

本节利用单位圆上点的坐标定义任意角的正弦函数、余弦函数.这个定义清楚地表明了正弦、余弦函数中从自变量到函数值之间的对应关系,也表明了这两个函数之间的关系.

教学重难点

重点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);终边相同的角的同一三角函数值相等(公式一).

难点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);三角函数线的正确理解.

免费高一数学教案篇3

教学目标

1.使学生了解反函数的概念;

2.使学生会求一些简单函数的反函数;

3.培养学生用辩证的观点观察、分析解决问题的能力。

教学重点

1.反函数的概念;

2.反函数的求法。

教学难点

反函数的概念。

教学方法

师生共同讨论

教具装备

幻灯片2张

第一张:反函数的定义、记法、习惯记法。(记作A);

第二张:本课时作业中的预习内容及提纲。

教学过程

(I)讲授新课

(检查预习情况)

师:这节课我们来学习反函数(板书课题)§2.4.1反函数的概念。

同学们已经进行了预习,对反函数的概念有了初步的了解,谁来复述一下反函数的定义、记法、习惯记法?

生:(略)

(学生回答之后,打出幻灯片A)。

师:反函数的定义着重强调两点:

(1)根据y=f(x)中x与y的关系,用y把x表示出来,得到x=φ(y);

(2)对于y在c中的任一个值,通过x=φ(y),x在A中都有惟一的值和它对应。

师:应该注意习惯记法是由记法改写过来的。

师:由反函数的定义,同学们考虑一下,怎样的映射确定的函数才有反函数呢?

生:一一映射确定的函数才有反函数。

(学生作答后,教师板书,若学生答不来,教师再予以必要的启示)。

师:在y=f(x)中与y=f-1(y)中的x、y,所表示的量相同。(前者中的x与后者中的x都属于同一个集合,y也是如此),但地位不同(前者x是自变量,y是函数值;后者y是自变量,x是函数值。)

在y=f(x)中与y=f–1(x)中的x都是自变量,y都是函数值,即x、y在两式中所处的地位相同,但表示的量不同(前者中的x是后者中的y,前者中的y是后者中的x。)

由此,请同学们谈一下,函数y=f(x)与它的反函数y=f–1(x)两者之间,定义域、值域存在什么关系呢?

生:(学生作答,教师板书)函数的定义域,值域分别是它的反函数的值域、定义域。

师:从反函数的概念可知:函数y=f(x)与y=f–1(x)互为反函数。

从反函数的概念我们还可以知道,求函数的反函数的方法步骤为:

(1)由y=f(x)解出x=f–1(y),即把x用y表示出;

(2)将x=f–1(y)改写成y=f–1(x),即对调x=f–1(y)中的x、y。

(3)指出反函数的定义域。

下面请同学自看例1

(II)课堂练习课本P68练习1、2、3、4。

(III)课时小结

本节课我们学习了反函数的概念,从中知道了怎样的映射确定的函数才有反函数并求函数的反函数的方法步骤,大家要熟练掌握。

(IV)课后作业

一、课本P69习题2.41、2。

二、预习:互为反函数的函数图象间的关系,亲自动手作题中要求作的图象。

板书设计

课题:求反函数的方法步骤:

定义:(幻灯片)

注意:小结

一一映射确定的

函数才有反函数

函数与它的反函

数定义域、值域的关系。

免费高一数学教案篇4

新学期又开始了,为使今后的工作能更顺利的开展,特制定此工作计划,请领导多多批评指导。

一、教材分析

高一上学期学习历史必修ⅰ“政治文明历程”,着重反映人类社会政治领域发展进程中的重要内容。政治活动是人类社会生活的重要组成部分。它与社会经济、文化活动密切相关,相互作用。了解中外历重要政治制度、重大事件及重要人物,探讨其在人类历史进程中的作用及其影响,汲取必要的历史经验教训。

二、学生现状分析

今年任教高一六、七、八、九四个的历史教学工作。通过初步接触和了解发现学生历史学科基础相当薄弱,缺乏学习兴趣,基本的学习方法和习惯都没有养成,而且对历史学科一惯当作“副科”,非常不重视。

三、本学期教学目标

1、知识与能力目标:通过学习,了解人类历重要政治制度、政治事件及其代表人物等基本史实,正确认识历阶级、阶级关系和阶级斗争,认识人类社会发展的基本规律。

2、过程与方法:学习搜集历有关政治活动方面的资料,并能进行初步的归纳与分析;学会从历史的角度来看待不同政治制度的产生、发展及其历史影响,理解政治变革是社会历史发展多种因素共同作用的结果,并能对其进行科学的评价与解释。

3、情感态度与价值观:理解从专制到民主、从人治到法治是人类社会一个漫长而艰难的历史过程,树立为社会主义政治文明建设而奋斗的人生理想。

四、工作措施

1、强化学生掌握基础知识的质,提高学生运用知识的水平。

就是要将课标要求的基础知识记忆牢固,理解准确。要注意研究在复习中怎样把注重基础知识的学习和专题问题、热点问题联系起来;要研究怎样整合教材,怎样加强三个必修模块内容之间的嫁接与联系,怎样整合选修模块与必修模块之间的联系;要研究采取哪些方式方法才能让学生把主干历史知识扎扎实实地掌握起来,达到记忆牢固,理解准确,运用灵活。

2、加强对学生分析解决问题的学习能力的培养。

针对前面分析的学生在知识迁移能力、提取有效信息能力、思维能力、审题能力等方面存在的诸多问题,要采取得力措施:

研究怎样实施问题意识教学,即怎样在复习教学中渗透问题意识,将教材中陈述性的史实,转换成问题性的素材,把说史变成问史和疑史,鼓励学生寻找史实之间的因果转化关系,把历史的知识序列变成史实的问题序列。

研究怎样提高学生理论认识能力,即学会应用辩证唯物主义和历史唯物主义基本原理分析和解决问题,使学生把理论观点转化为认识历史的思维方法,用以全面地、辩证地分析历史问题。

研究采取什么措施和方法落实历史思维能力的培养与训练,即怎样把各种能力培养与具体的历史知识相结合,与一定的方法技巧相结合;怎样把能力的培养贯穿于教学、测试等各个环节和各种教学活动中,做到能力培养内容化、方法化、经常化,以期切实提高学生解答历史试题的基本能力。

研究采取那些措施和方法培养学生从材料中提取有效信息回答问题的能力,让学生做到:能够正确理解材料信息的含义;能够准确概括提炼有效信息;能够结合所学知识解决新问题。

3、加强学生行文答卷的规范性。

初步设想通过老师明确要求和样卷展览、个别指导、限期做到等四个环节来落实加强学生行文答卷的规范性的训练。

通过采取各种有效措施达到三个教学目标:一是放慢速度,夯实基础;二是理清线索,构建结构;三是注重能力,接轨高考。在今后的教学工作中要以提高课堂教学效益为目的,全面整合教材内容,优化教学模式,以期在提高学生综合素质的基础上帮助学生提高历史学科的学习能力和综合探究能力。

五、专业成长计划

本学期继续努力学习,广泛涉猎本学科、现代教育技术以及教育教学和学生管理方面的理论,并积极参加各种学习和培训,对素质教育和高效课堂要有更明确的认识,并积极参加投身教研教改,把成果落实到教学实践中。

免费高一数学教案篇5

一、教材分析

函数作为初等数学的核心内容,贯穿于整个初等数学体系之中。函数这一章在高中数学中,起着承上启下的作用,它是对初中函数概念的承接与深化。在初中,只停留在具体的几个简单类型的函数上,把函数看成变量之间的依赖关系,而高中阶段不仅把函数看成变量之间的依赖关系,更是从“变量说”到“对应说”,这是对函数本质特征的进一步认识,也是学生认识上的一次飞跃。这一章内容渗透了函数的思想,集合的思想以及数学建模的思想等内容,这些内容的学习,无疑对学生今后的学习起着深刻的影响。

本节《函数的概念》是函数这一章的起始课。概念是数学的基础,只有对概念做到深刻理解,才能正确灵活地加以应用。本课从集合间的对应来描绘函数概念,起到了上承集合,下引函数的作用。也为进一步学习函数这一章的其它内容提供了方法和依据。

二、重难点分析

根据对上述对教材的分析及新课程标准的要求,确定函数的概念既是本节课的重点,也应该是本章的难点。

三、学情分析

1、有利因素:一方面学生在初中已经学习了变量观点下的函数定义,并具体研究了几类最简单的函数,对函数已经有了一定的感性认识;另一方面在本书第一章学生已经学习了集合的概念,这为学习函数的现代定义打下了基础。

2、不利因素:函数在初中虽已讲过,不过较为肤浅,本课主要是从两个集合间对应来描绘函数概念,是一个抽象过程,要求学生的抽象、分析、概括的能力比较高,学生学起来有一定的难度。

四、目标分析

1、理解函数的概念,会用函数的定义判断函数,会求一些最基本的函数的定义域、值域。

2、通过对实际问题分析、抽象与概括,培养学生抽象、概括、归纳知识以及逻辑思维、建模等方面的能力。

3、通过对函数概念形成的探究过程,培养学生发现问题,探索问题,不断超越的创新品质。

五、教法学法

本节课的教学以学生为主体、教师是数学课堂活动的组织者、引导者和参与者,我一方面精心设计问题情景,引导学生主动探索。另一方面,依据本节为概念学习的特点,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与,通过不断探究、发现,在师生互动、生生互动中,让学习过程成为学生心灵愉悦的主动认知过程。

学法方面,学生通过对新旧两种函数定义的对比,在集合论的观点下初步建构出函数的概念。在理解函数概念的基础上,建构出函数的定义域、值域的概念,并初步掌握它们的求法。

免费高一数学教案篇6

教学目的:

掌握圆的标准方程,并能解决与之有关的问题

教学重点:

圆的标准方程及有关运用

教学难点:

标准方程的灵活运用

教学过程:

一、导入新课,探究标准方程

二、掌握知识,巩固练习

练习:

1.说出下列圆的方程

⑴圆心(3,-2)半径为5

⑵圆心(0,3)半径为3

2.指出下列圆的圆心和半径

⑴(x-2)2+(y+3)2=3

⑵x2+y2=2

⑶x2+y2-6x+4y+12=0

3.判断3x-4y-10=0和x2+y2=4的位置关系

4.圆心为(1,3),并与3x-4y-7=0相切,求这个圆的方程

三、引伸提高,讲解例题

例1、圆心在y=-2x上,过p(2,-1)且与x-y=1相切求圆的方程(突出待定系数的数学方法)

练习:

1、某圆过(-2,1)、(2,3),圆心在x轴上,求其方程。

2、某圆过A(-10,0)、B(10,0)、C(0,4),求圆的方程。

例2:某圆拱桥的跨度为20米,拱高为4米,在建造时每隔4米加一个支柱支撑,求A2P2的长度。

例3、点M(x0,y0)在x2+y2=r2上,求过M的圆的切线方程(一题多解,训练思维)

四、小结练习P771,2,3,4

五、作业P811,2,3,4

免费高一数学教案篇7

一、指导思想与理论依据

数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。

二、教材分析

三角函数的诱导公式是普通高中课程标准实验教科书(人教A版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六).本节是第一课时,教学内容为公式(二)、(三)、(四).教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角与、、终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四).同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求.为此本节内容在三角函数中占有非常重要的地位.

三、学情分析

本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容.

四、教学目标

(1).基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;

(2).能力训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简单的三角函数求值与化简;

(3).创新素质目标:通过对公式的推导和运用,提高三角恒等变形的能力和渗透化归、数形结合的数学思想,提高学生分析问题、解决问题的能力;

(4).个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观.

五、教学重点和难点

1.教学重点

理解并掌握诱导公式.

2.教学难点

正确运用诱导公式,求三角函数值,化简三角函数式.

六、教法学法以及预期效果分析

“授人以鱼不如授之以鱼”,作为一名老师,我们不仅要传授给学生数学知识,更重要的是传授给学生数学思想方法,如何实现这一目的,要求我们每一位教者苦心钻研、认真探究.下面我从教法、学法、预期效果等三个方面做如下分析.

1.教法

数学教学是数学思维活动的教学,而不仅仅是数学活动的结果,数学学习的目的不仅仅是为了获得数学知识,更主要作用是为了训练人的思维技能,提高人的思维品质.

在本节课的教学过程中,本人以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式,还给学生“时间”、“空间”,由易到难,由特殊到一般,尽力营造轻松的学习环境,让学生体味学习的快乐和成功的喜悦.

2.学法

“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,很多课堂教学常常以高起点、大容量、快推进的做法,以便教给学生更多的知识点,却忽略了学生接受知识需要时间消化,进而泯灭了学生学习的兴趣与热情.如何能让学生程度的消化知识,提高学习热情是教者必须思考的问题.

在本节课的教学过程中,本人引导学生的学法为思考问题、共同探讨、解决问题简单应用、重现探索过程、练习巩固。让学生参与探索的全部过程,让学生在获取新知识及解决问题的方法后,合作交流、共同探索,使之由被动学习转化为主动的自主学习.

3.预期效果

本节课预期让学生能正确理解诱导公式的发现、证明过程,掌握诱导公式,并能熟练应用诱导公式了解一些简单的化简问题.

七、教学流程设计

(一)创设情景

1.复习锐角300,450,600的三角函数值;

2.复习任意角的三角函数定义;

3.问题:由,你能否知道sin2100的值吗?引如新课.

设计意图

自信的鼓励是增强学生学习数学的自信,简单易做的题加强了每个学生学习的热情,具体数据问题的出现,让学生既有好像会做的心理但又有迷惑的茫然,去发掘潜力期待寻找机会证明我能行,从而思考解决的办法.

(二)新知探究

1.让学生发现300角的终边与2100角的终边之间有什么关系;

2.让学生发现300角的终边和2100角的终边与单位圆的交点的坐标有什么关系;

3.Sin2100与sin300之间有什么关系.

设计意图

由特殊问题的引入,使学生容易了解,实现教学过程的平淡过度,为同学们探究发现任意角与的三角函数值的关系做好铺垫.

(三)问题一般化

探究一

1.探究发现任意角的终边与的终边关于原点对称;

2.探究发现任意角的终边和角的终边与单位圆的交点坐标关于原点对称;

3.探究发现任意角与的三角函数值的关系.

设计意图

首先应用单位圆,并以对称为载体,用联系的观点,把单位圆的性质与三角函数联系起来,数形结合,问题的设计提问从特殊到一般,从线对称到点对称到三角函数值之间的关系,逐步上升,一气呵成诱导公式二.同时也为学生将要自主发现、探索公式三和四起到示范作用,下面练习设计为了熟悉公式一,让学生感知到成功的喜悦,进而敢于挑战,敢于前进

(四)练习

利用诱导公式(二),口答下列三角函数值.

(1).;(2).;(3)..

喜悦之后让我们重新启航,接受新的挑战,引入新的问题.

(五)问题变形

由sin3000=-sin600出发,用三角的定义引导学生求出sin(-3000),Sin1500值,让学生联想若已知sin3000=-sin600,能否求出sin(-3000),Sin1500)的值.学生自主探究

免费高一数学教案篇8

教学目标:

①掌握对数函数的性质。

②应用对数函数的性质可以解决:对数的大小比较,求复合函数的定义域、值 域及单调性。

③ 注重函数思想、等价转化、分类讨论等思想的渗透,提高解题能力。

教学重点与难点:对数函数的性质的应用。

教学过程设计:

⒈复习提问:对数函数的概念及性质。

⒉开始正课

1 比较数的大小

例 1 比较下列各组数的大小。

⑴loga5.1 ,loga5.9 (a>0,a≠1)

⑵log0.50.6 ,logЛ0.5 ,lnЛ

师:请同学们观察一下⑴中这两个对数有何特征?

生:这两个对数底相等。

师:那么对于两个底相等的对数如何比大小?

生:可构造一个以a为底的对数函数,用对数函数的单调性比大小。

师:对,请叙述一下这道题的解题过程。

生:对数函数的单调性取决于底的大小:当0调递减,所以loga5.1>loga5.9 ;当a>1时,函数y=logax单调递增,所以loga5.1

板书:

解:Ⅰ)当0

∵5.1<5.9 ∴loga5.1>loga5.9

Ⅱ)当a>1时,函数y=logax在(0,+∞)上是增函数,

∵5.1<5.9 ∴loga5.1

师:请同学们观察一下⑵中这三个对数有何特征?

生:这三个对数底、真数都不相等。

师:那么对于这三个对数如何比大小?

生:找“中间量”, log0.50.6>0,lnЛ>0,logЛ0.5<0;lnЛ>1,

log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。

板书:略。

师:比较对数值的大小常用方法:①构造对数函数,直接利用对数函数 的单调性比大小,②借用“中间量”间接比大小,③利用对数函数图象的位置关系来比大小。

2 函数的定义域, 值 域及单调性。

例 2 ⑴求函数y=的定义域。

⑵解不等式log0.2(x2+2x-3)>log0.2(3x+3)

师:如何来求⑴中函数的定义域?(提示:求函数的定义域,就是要使函数有意义。若函数中含有分母,分母不为零;有偶次根式,被开方式大于或等于零;若函数中有对数的形式,则真数大于零,如果函数中同时出现以上几种情况,就要全部考虑进去,求它们共同作用的结果。)生:分母2x-1≠0且偶次根式的被开方式log0.8x-1≥0,且真数x>0。

板书:

解:∵   2x-1≠0      x≠0.5

log0.8x-1≥0 ,  x≤0.8

x>0        x>0

∴x(0,0.5)∪(0.5,0.8〕

师:接下来我们一起来解这个不等式。

分析:要解这个不等式,首先要使这个不等式有意义,即真数大于零,再根据对数函数的单调性求解。

师:请你写一下这道题的解题过程。

生:<板书>

解:  x2+2x-3>0      x<-3 或 x>1

(3x+3)>0    ,   x>-1

x2+2x-3<(3x+3)    -2

不等式的解为:1

例 3 求下列函数的值域和单调区间。

⑴y=log0.5(x- x2)

⑵y=loga(x2+2x-3)(a>0,a≠1)

师:求例3中函数的的值域和单调区间要用及复合函数的思想方法。

下面请同学们来解⑴。

生:此函数可看作是由y= log0.5u, u= x- x2复合而成。

板书:

解:⑴∵u= x- x2>0, ∴0

u= x- x2=-(x-0.5)2+0.25, ∴0

∴y= log0.5u≥log0.50.25=2

∴y≥2

x    x(0,0.5]   x[0.5,1)

u= x- x2

y= log0.5u

y=log0.5(x- x2)

函数y=log0.5(x- x2)的单调递减区间(0,0.5],单调递 增区间[0.5,1)

注:研究任何函数的性质时,都应该首先保证这个函数有意义,否则函数都不存在,性质就无从谈起。

师:在⑴的基础上,我们一起来解⑵。请同学们观察一下⑴与⑵有什么区别?

生:⑴的底数是常值,⑵的底数是字母。

师:那么⑵如何来解?

生:只要对a进行分类讨论,做法与⑴类似。

板书:略。

⒊小结

这堂课主要讲解如何应用对数函数的性质解决一些问题,希望能通过这堂课使同学们对等价转化、分类讨论等思想加以应用,提高解题能力。

⒋作业

⑴解不等式

①lg(x2-3x-4)≥lg(2x+10);②loga(x2-x)≥loga(x+1),(a为常数)

⑵已知函数y=loga(x2-2x),(a>0,a≠1)

①求它的单调区间;②当0

⑶已知函数y=loga (a>0, b>0, 且 a≠1)

①求它的定义域;②讨论它的奇偶性;  ③讨论它的单调性。

⑷已知函数y=loga(ax-1) (a>0,a≠1),

①求它的定义域;②当x为何值时,函数值大于1;③讨论它的单调性。

5.课堂教学设计说明

这节课是安排为习题课,主要利用对数函数的性质解决一些问题,整个一堂课分两个部分:一 .比较数的大小,想通过这一部分的练习,

培养同学们构造函数的思想和分类讨论、数形结合的思想。二.函数的定义域, 值 域及单调性,想通过这一部分的练习,能使同学们重视求函数的定义域。因为学生在求函数的值域和单调区间时,往往不考虑函数的定义域,并且这种错误很顽固,不易纠正。因此,力求学生做到想法正确,步骤清晰。为了调动学生的积极性,突出学生是课堂的主体,便把例题分了层次,由易到难,力求做到每题都能由学生独立完成。但是,每一道题的解题过程,老师都应该给以板书,这样既让学生有了获取新知识的快乐,又不必为了解题格式的不熟悉而烦恼。每一题讲完后,由教师简明扼要地小结,以使好学生掌握地更完善,较差的学生也能够跟上。

免费高一数学教案篇9

各位,下午好:

今天我说课的课题是古诗《迢迢牵牛星》。接下来,我对本课题进行分析:

一、说教材的地位和作用

《迢迢牵牛星》是编排在粤教版全日制普通高级中学教科书语文必修1第四单元第四个课题《汉魏晋诗三首》中的其中一首。“在心为志,发言为诗”,“情动于中而形于言”。诗歌是诗人真情实感的咏唱,是心灵对现实的应答。《古诗十九首》映了时代的动荡,社会的乱离《迢迢牵牛星》借牛郎织女的故事,寄托织女的相思之苦,形象地抒发了现实生活中男女情人咫尺天涯的哀怨,表达了渴望夫妻团圆的强烈愿望。通过学习本文,将使学生进一步学会诗歌鉴赏的方法,培养人文素养。在此之前,学生们已经学习了《诗经》两首、《离骚(节选)》、《孔雀东南飞》,这为过渡到本课题的学习起到了很好的铺垫作用。因此,学好本课为学好以后的诗歌可以打下牢固的理论基础,而且它在整个教材也起到了承上启下的作用。本课包含的一些重要的知识点和思想,为以后学生在学习理解类似的诗歌并为简单地鉴赏诗歌打下坚实的基础。

二、说教学目标

根据本教材的结构和内容分析,结合着高一年级学生他们的认知结构及其心理特征,我制定了以下的教学目标:

1.知识目标:了解《古诗十九首》相关知识,有节奏地朗读诗歌并背诵全诗。

2.技能目标:会分析诗歌的情感,能简单分析诗歌叠音词作用和表达效果。

3.情感与价值观目标:品味《迢迢牵牛星》诗中的爱情美,理解诗歌所表达出的渴望普天下夫妻团聚的愿望。

三、说教学的重难点

本着对高中语文新课程标准的理解,在吃透教材基础上,我确定了以下教学重点和难点。

1.教学重点:分析诗歌中叠音词作用和表达效果,掌握鉴赏此类诗歌的技巧。

2.教学难点:据学生的认知特点,牵牛织女星等天文知识、光年的定义的理解是教学的难点。

3.确立重点和难点的依据是:天文知识、光年较抽象,学生欠缺这方面的基础知识。

为了讲清教材的重难点,使学生能够达到本课题设定的教学目标,我再从教法我学法上谈谈。

四、说教法

我们都知道语文是一门提高人文素养,培养人的鉴赏能力的重要学科。因此,在教学过程中,不仅要使学生“知其然”,还要使学生“知其所以然”。我们在以师生既为主体又为客体的原则下,展现获取理论知识、解决实际问题的思维过程。

考虑到高一级学生的现状,我主要采取朗读法、讲授法、读写结合法,心理学理论告诉我们:学生的学习情绪直接影响学习效果。因此我还采用多媒体为教学手段的情景教学方法,创设情境帮助学生理解诗歌,利用叠音词串联诗歌,充分调动学生积极主动地参与到教学活动中来,使他们在活动中得到认识和体验。当然老师自身也是非常重要的教学资源。教师本人应该通过课堂教学感染和激励学生,调动起学生参与活动的积极性,激发学生对解决实际问题的渴望,并且要培养学生以理论联系实际的能力,从而达到的教学效果。基于本课题的特点,我主要采用了以下的教学方法:

1.朗读法:“三分诗七分读”。从教学过程来说,教学中将朗读教学贯彻到课堂始终,教师示范朗读,引导学生按要求听读,帮助学生深入体会课文的情感意蕴,学生通过反复的朗读,加深对课文的理解,培养学生的语感。

2.讲授法:教师通过口头语言向学生传授知识、培养能力、进行思想教育。按照彻启发式教学原则,讲授的内容突出本课的的重点、难点和关键,使学生随着教师的讲解或讲述开动脑筋思考问题,讲中有导,讲中有练。使学生主体作用凸显出来,把课堂进行得生动活泼,而不是注入式。

3.读写结合法:注重读写结合,在熟读的基础上,让学生对教材后面的叠词练习进行快速地思考,组织答案,我来总结这类题目的答题技巧和规律。这不仅有助于学生对诗歌叠音词的理解,而且提高了学生的诗歌鉴赏能力。

五、说学法

根据本文篇幅简短,又是浅显的文言文的特点,要求学生课前必须进行预习,并利用课下注释和工具书来疏通文意。让学生从机械的“学答”向“学问”转变,从“学会”向“会学”转变,成为学习的真正的主人。在课堂上,通过朗读和提问法去推动学生思考,进一步理解文章的内容,调动学生学习的积极性,读出初步真实感受。这节课在指导学生的学习方法和培养学生的学习能力方面主要采取以下方法:思考评价法、分析归纳法、总结反思法。

最后我具体来谈谈这一堂课的教学过程。

六、说教学过程

在这节课的教学过程中,我注重突出重点,条理清晰,紧凑合理,各项活动的安排也注重互动、交流,限度的调动学生参与课堂的积极性、主动性。

1.导入新课:

提问学生是否知道中国古代四大爱情故事,从学生的回答情况中引出本节课的主题牛郎织女的故事。在此之后,请一位男生和一位女生起来讲述他们所了解到的牛郎织女的爱情故事,总结学生的回答情况,并由我来详细地向学生交代故事的起源、发展,最重要的是突出这样一个常识让传说与课文有了紧密的切合点,牛郎和织女是因为王母娘娘的一根发簪化成的银河而相隔两地,不得相见,后来真情感动天地,遂允许二人七月七日相见。

2.示范朗读:

教师朗读全文,学生按要求在书中画出容易读错的多音字词。教师用语言鼓励学生,请学生给老师挑刺(教师故意读错某个词),欢迎学生与教师竞争。这样既能使学生的注意力集中到听读上,同时又能激气学生当堂背下诗歌的兴趣和信心。

3.学生朗读:

朗读是诗歌教学中必不可少的手段,应反复进行。要引导学生采用轮读、个读、听读、小组读等多形式朗读,以读带动对课文的理解,使学生以读为乐。

4.学生背诵

在经过反复的听读和朗读之后,学生已经基本能粗略知道诗歌大意,在此基础上,要求学生根据自己的情况即时背诵,教师根据学生的不同情况引导以诗歌的思想内容。

5.板书设计:

我比较注重直观地、系统的板书设计,并及时地体现教材中的知识点,以便于学生能够理解掌握。我的板书设计是:

6.布置作业。

我布置的课堂作业是:《一号》P110页第三题

七、我为什么要这样上课

1.对教材内容的处理。

根据新课程标准的要求、知识的跨度、学生的认知水平,我对教材内容的增有减。

2.教学策略的选用

(1)重点字词如多音字读音让学生动手去查阅,自己作初步的记忆,教师扮演辅导者的角色。这样有利于学生能力的提高,有利于学生对诗歌学习兴趣的培养。通过对《古诗十九首》及《迢迢牵牛星》的文学常识和背景知识的介绍,激发学生了解古诗的兴趣,有利于提高学生学习的积极性。

(2)让学生巩固重点知识并形成新的知识。通过布置作业,让学生背诵课文,使他们进一步的理解文章,梳理思路,提高诗歌鉴赏阅读的语感和鉴赏的思路。完成《一号》的习题,有利于学生对诗歌的深刻理解,对以后的古诗学习打下坚实的基础。

八、结束语

各位领导、老师们,本节课我根据高一年级学生的心理特征及其认知规律,采用直观教学和讨论法的教学方法,以‘教师为主导,学生为主体’,教师的“导”立足于学生的“学”,以学法为重心,放手让学生自主探索的学习,主动地参与到知识形成的整个思维过程,力求使学生在积极、愉快的课堂气氛中提高自己的认识水平,从而达到预期的教学效果。我的说课完毕,谢谢!

免费高一数学教案篇10

一、教学目标

1.知识与技能:掌握画三视图的基本技能,丰富学生的空间想象力。

2.过程与方法:通过学生自己的亲身实践,动手作图,体会三视图的作用。

3.情感态度与价值观:提高学生空间想象力,体会三视图的作用。

二、教学重点:画出简单几何体、简单组合体的三视图;

难点:识别三视图所表示的空间几何体。

三、学法指导:观察、动手实践、讨论、类比。

四、教学过程

(一)创设情景,揭开课题

展示庐山的风景图——“横看成岭侧看成峰,远近高低各不同”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体。

(二)讲授新课

1、中心投影与平行投影:

中心投影:光由一点向外散射形成的投影;

平行投影:在一束平行光线照射下形成的投影。

正投影:在平行投影中,投影线正对着投影面。

2、三视图:

正视图:光线从几何体的前面向后面正投影,得到的投影图;

侧视图:光线从几何体的左面向右面正投影,得到的投影图;

俯视图:光线从几何体的上面向下面正投影,得到的投影图。

三视图:几何体的正视图、侧视图和俯视图统称为几何体的三视图。

三视图的画法规则:长对正,高平齐,宽相等。

长对正:正视图与俯视图的长相等,且相互对正;

高平齐:正视图与侧视图的高度相等,且相互对齐;

宽相等:俯视图与侧视图的宽度相等。

3、画长方体的三视图:

正视图、侧视图和俯视图分别是从几何体的正前方、正左方和正上方观察到有几何体的正投影图,它们都是平面图形。

长方体的三视图都是长方形,正视图和侧视图、侧视图和俯视图、俯视图和正视图都各有一条边长相等。

4、画圆柱、圆锥的三视图:

5、探究:画出底面是正方形,侧面是全等的三角形的棱锥的三视图。

(三)巩固练习

课本P15练习1、2;P20习题1.2[A组]2。

(四)归纳整理

请学生回顾发表如何作好空间几何体的三视图

(五)布置作业

课本P20习题1.2[A组]1。

免费高一数学教案篇11

教学目标

掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题。

教学重难点

掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题。

教学过程

等比数列性质请同学们类比得出。

【方法规律】

1、通项公式与前n项和公式联系着五个基本量,“知三求二”是一类最基本的运算题。方程观点是解决这类问题的基本数学思想和方法。

2、判断一个数列是等差数列或等比数列,常用的方法使用定义。特别地,在判断三个实数a,b,c成等差(比)数列时,常用(注:若为等比数列,则a,b,c均不为0)

3、在求等差数列前n项和的(小)值时,常用函数的思想和方法加以解决。

【示范举例】

例1:(1)设等差数列的前n项和为30,前2n项和为100,则前3n项和为。

(2)一个等比数列的前三项之和为26,前六项之和为728,则a1=,q=。

例2:四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数。

例3:项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,求该数列的中间项。

免费高一数学教案篇12

教学目标

1.通过教学使学生理解的概念,推导并掌握通项公式.

2.使学生进一步体会类比、归纳的思想,培养学生的观察、概括能力.

3.培养学生勤于思考,实事求是的精神,及严谨的科学态度.

教学重点,难点

重点、难点是的定义的归纳及通项公式的推导.

教学用具

投影仪,多媒体软件,电脑.

教学方法

讨论、谈话法.

教学过程

一、提出问题

给出以下几组数列,将它们分类,说出分类标准.(幻灯片)

①-2,1,4,7,10,13,16,19,…

②8,16,32,64,128,256,…

③1,1,1,1,1,1,1,…

④243,81,27,9,3,1, , ,…

⑤31,29,27,25,23,21,19,…

⑥1,-1,1,-1,1,-1,1,-1,…

⑦1,-10,100,-1000,10000,-100000,…

⑧0,0,0,0,0,0,0,…

由学生发表意见(可能按项与项之间的关系分为递增数列、递减数列、常数数列、摆动数列,也可能分为等差、等比两类),统一一种分法,其中②③④⑥⑦为有共同性质的一类数列(学生看不出③的情况也无妨,得出定义后再考察③是否为).

二、讲解新课

请学生说出数列②③④⑥⑦的共同特性,教师指出实际生活中也有许多类似的例子,如变形虫分裂问题.假设每经过一个单位时间每个变形虫都分裂为两个变形虫,再假设开始有一个变形虫,经过一个单位时间它分裂为两个变形虫,经过两个单位时间就有了四个变形虫,…,一直进行下去,记录下每个单位时间的变形虫个数得到了一列数 这个数列也具有前面的几个数列的共同特性,这是我们将要研究的另一类数列——. (这里播放变形虫分裂的多媒体软件的第一步)

(板书)

1.的定义(板书)

根据与等差数列的名字的区别与联系,尝试给下定义.学生一般回答可能不够完美,多数情况下,有了等差数列的基础是可以由学生概括出来的.教师写出的定义,标注出重点词语.

请学生指出②③④⑥⑦各自的公比,并思考有无数列既是等差数列又是.学生通过观察可以发现③是这样的数列,教师再追问,还有没有其他的例子,让学生再举两例.而后请学生概括这类数列的一般形式,学生可能说形如 的数列都满足既是等差又是,让学生讨论后得出结论:当 时,数列 既是等差又是,当 时,它只是等差数列,而不是.教师追问理由,引出对的认识:

2.对定义的认识(板书)

(1)的首项不为0;

(2)的每一项都不为0,即 ;

问题:一个数列各项均不为0是这个数列为的什么条件?

(3)公比不为0.

用数学式子表示的定义.

是 ①.在这个式子的写法上可能会有一些争议,如写成 ,可让学生研究行不行,好不好;接下来再问,能否改写为 是 ?为什么不能?

式子 给出了数列第 项与第 项的数量关系,但能否确定一个?(不能)确定一个需要几个条件?当给定了首项及公比后,如何求任意一项的值?所以要研究通项公式.

3.的通项公式(板书)

问题:用 和 表示第 项 .

①不完全归纳法

②叠乘法

,… , ,这 个式子相乘得 ,所以 .

(板书)(1)的通项公式

得出通项公式后,让学生思考如何认识通项公式.

(板书)(2)对公式的认识

由学生来说,最后归结:

①函数观点;

②方程思想(因在等差数列中已有认识,此处再复习巩固而已).

这里强调方程思想解决问题.方程中有四个量,知三求一,这是公式最简单的应用,请学生举例(应能编出四类问题).解题格式是什么?(不仅要会解题,还要注意规范表述的训练)

如果增加一个条件,就多知道了一个量,这是公式的更高层次的应用,下节课再研究.同学可以试着编几道题.

三、小结

1.本节课研究了的概念,得到了通项公式;

2.注意在研究内容与方法上要与等差数列相类比;

3.用方程的思想认识通项公式,并加以应用.

四、作业 (略)

五、板书设计

1.等比数列的定义

2.对定义的认识

3.等比数列的通项公式

(1)公式

(2)对公式的认识

探究活动

将一张很大的薄纸对折,对折30次后(如果可能的话)有多厚?不妨假设这张纸的厚度为0.01毫米.

参考答案:

30次后,厚度为,这个厚度超过了世界的山峰——珠穆朗玛峰的高度.如果纸再薄一些,比如纸厚0.001毫米,对折34次就超过珠穆朗玛峰的高度了.还记得国王的承诺吗?第31个格子中的米已经是1073741824粒了,后边的格子中的米就更多了,最后一个格子中的米应是 粒,用计算器算一下吧(用对数算也行).

免费高一数学教案篇13

一、教学过程

1.复习

反函数的概念、反函数求法、互为反函数的函数定义域值域的关系。

求出函数y=x3的反函数。

2.新课

先让学生用几何画板画出y=x3的图象,学生纷纷动手,很快画出了函数的图象。有部分学生发出了“咦”的一声,因为他们得到了如下的图象:

教师在画出上述图象的学生中选定生1,将他的屏幕内容通过教学系统放到其他同学的屏幕上,很快有学生作出反应。

生2:这是y=x3的反函数y=的图象。

师:对,但是怎么会得到这个图象,请大家讨论。

(学生展开讨论,但找不出原因。)

师:我们请生1再给大家演示一下,大家帮他找找原因。

(生1将他的制作过程重新重复了一次。)

生3:问题出在他选择的次序不对。

师:哪个次序?

生3:作点B前,选择xA和xA3为B的坐标时,他先选择xA3,后选择xA,作出来的点的坐标为(xA3,xA),而不是(xA,xA3)。

师:是这样吗?我们请生1再做一次。

(这次生1在做的过程当中,按xA、xA3的次序选择,果然得到函数y=x3的图象。)

师:看来问题确实是出在这个地方,那么请同学再想想,为什么他采用了错误的次序后,恰好得到了y=x3的反函数y=的图象呢?

(学生再次陷入思考,一会儿有学生举手。)

师:我们请生4来告诉大家。

生4:因为他这样做,正好是将y=x3上的点B(x,y)的横坐标x与纵坐标y交换,而y=x3的反函数也正好是将x与y交换。

师:完全正确。下面我们进一步研究y=x3的图象及其反函数y=的图象的关系,同学们能不能看出这两个函数的图象有什么样的关系?

(多数学生回答可由y=x3的图象得到y=的图象,于是教师进一步追问。)

师:怎么由y=x3的图象得到y=的图象?

生5:将y=x3的图象上点的横坐标与纵坐标交换,可得到y=的图象。

师:将横坐标与纵坐标互换?怎么换?

(学生一时未能明白教师的意思,场面一下子冷了下来,教师不得不将问题进一步明确。)

师:我其实是想问大家这两个函数的图象有没有对称关系,有的话,是什么样的对称关系?

(学生重新开始观察这两个函数的图象,一会儿有学生举手。)

生6:我发现这两个图象应是关于某条直线对称。

师:能说说是关于哪条直线对称吗?

生6:我还没找出来。

(接下来,教师引导学生利用几何画板找出两函数图象的对称轴,画出如下图形,如图2所示:)

学生通过移动点A(点B、C随之移动)后发现,BC的中点M在同一条直线上,这条直线就是两函数图象的对称轴,在追踪M点后,发现中点的轨迹是直线y=x。

生7:y=x3的图象及其反函数y=的图象关于直线y=x对称。

师:这个结论有一般性吗?其他函数及其反函数的图象,也有这种对称关系吗?请同学们用其他函数来试一试。

(学生纷纷画出其他函数与其反函数的图象进行验证,最后大家一致得出结论:函数及其反函数的图象关于直线y=x对称。)

教师巡视全班时已经发现这个问题,将这个图象传给全班学生后,几乎所有人都看出了问题所在:图中函数y=x2(x∈R)没有反函数,②也不是函数的图象。

最后教师与学生一起总结:

点(x,y)与点(y,x)关于直线y=x对称;

函数及其反函数的图象关于直线y=x对称。

二、反思与点评

1.在开学初,我就教学几何画板4。0的用法,在教函数图象画法的过程当中,发现学生根据选定坐标作点时,不太注意选择横坐标与纵坐标的顺序,本课设计起源于此。虽然几何画板4。04中,能直接根据函数解析式画出图象,但这样反而不能揭示图象对称的本质,所以本节课教学中,我有意选择了几何画板4。0进行教学。

2.荷兰数学教育家弗赖登塔尔认为,数学学习过程当中,可借助于生动直观的形象来引导人们的思想过程,但常常由于图形或想象的错误,使人们的思维误入歧途,因此我们既要借助直观,但又必须在一定条件下摆脱直观而形成抽象概念,要注意过于直观的例子常常会影响学生正确理解比较抽象的概念。

计算机作为一种现代信息技术工具,在直观化方面有很强的表现能力,如在函数的图象、图形变换等方面,利用计算机都可得到其他直观工具不可能有的效果;如果只是为了直观而使用计算机,但不能达到更好地理解抽象概念,促进学生思维的目的的话,这样的教学中,计算机最多只是一种普通的直观工具而已。

在本节课的教学中,计算机更多的是作为学生探索发现的工具,学生不但发现了函数与其反函数图象间的对称关系,而且在更深层次上理解了反函数的概念,对反函数的存在性、反函数的求法等方面也有了更深刻的理解。

当前计算机用于中学数学的主要形式还是以辅助为主,更多的是把计算机作为一种直观工具,有时甚至只是作为电子黑板使用,今后的发展方向应是:将计算机作为学生的认知工具,让学生通过计算机发现探索,甚至利用计算机来做数学,在此过程当中更好地理解数学概念,促进数学思维,发展数学创新能力。

3.在引出两个函数图象对称关系的时候,问题设计不甚妥当,本来是想要学生回答两个函数图象对称的关系,但学生误以为是问如何由y=x3的图象得到y=的图象,以致将学生引入歧途。这样的问题在今后的教学中是必须力求避免的。

免费高一数学教案篇14

一、重视英语基础知识,狠抓词汇教学与基本句型的训练

以《新课程标准》为基础,以学校的教科研计划为指导,以学生的英语实际水平为依据,我们学习和借鉴以往高一备课组的好的做法,重点在英语基础知识的讲练结合方面下工夫,学生的基础薄弱,关键是基本词汇掌握的不扎实,对英语的重点句型掌握得不好。我们每周进行一次基本词汇,重点句型和重点语法的随堂检测,每天课前五分钟采用灵活多样的方法进行听写检查,主要是采用在具体的语境中练习单词拼写的方法,先从最基本的词汇抓起,逐步过渡到句型、小短文的默写检查上。

二、限度地提高课堂教学效率,发挥学生的学习积极性和主动性

在上每一节课前,都要先进行集体备课,认真研究教材和教法以及学生的学情,在课堂上限度的调动学生的学习积极性和主动性。设计简单一些的问题,逐步引导学生思考,精讲重点词汇、短语及句式,多创设语言情境让学生讨论,对学生进行分组分层教学,设计不同难度的问题与练习,让每个学生都能体验到英语学习的快乐与成功感。

三、以阅读理解为主线,提升学生的语篇理解能力

阅读是提高语篇理解能力的途径,我们在上好阅读课的同时,重点选取适合学生阅读水平的阅读材料,如:英语报刊上的经典美文,《新概念英语》中的短文等。每天进行一次阅读训练,并跟上检查批改,内容为备课组自选的材料,可以从国外网站上或从报纸上选取内容简短,新颖有趣的文章。练习形式多样,有传统的选择题,也有灵活多样的问答题,填空题等。

四、加强听力训练,注重听力技巧的点拨

我们将利用好听力材料,对学生的听力进行强化训练,同时,多指导做题技巧,听力放完后学生把做错的题目汇总,自查并反复阅读听力原文,找出错题原因,然后老师利用合适的时间进行指导,点拨。尤其是在高一最初播放听力的几周时间里,教师要多指导。

五、组织好集体备课,加强相互听课评课,取长补短,共同进步

认真组织好集体备课,限度地发挥集体智慧的力量,对教学的重点难点进行讨论,并由主备老师上示范课,其他老师听课并一起评课,对不足之处进行修改,补充,通过相互听课学习,加强教学和指导的针对性,发挥备课组骨干教师的示范作用,同时学习新教师的一些好的教学方法,做到取人之长,补己之短,使整个备课组成员共同成长。

六、换一种独特的方法批改英语作文

我们本学期将一改过去传统的批改作文的方法,采用划出学生作文中正确句子的方法来批改,每次只划出正确的和精彩的句子,并重点标注。这样几乎每个学生都能够写对一个或几个句子,这样做的好处是学生会逐渐由写好几个句子提高到写好大多数句子,也能使学生对写作有成功感。然后我们把学生作文中的好句子进行积累,整合,并印发给学生共同赏析。而不是象原来那样,整篇文章中都是刺眼的错误,学生一看就感觉差距太大,不想继续练了。

免费高一数学教案篇15

教学目的:

(1)明确函数的三种表示方法;

(2)在实际情境中,会根据不同的需要选择恰当的方法表示函数;

(3)通过具体实例,了解简单的分段函数,并能简单应用;

(4)纠正认为“y=f(_)”就是函数的解析式的片面错误认识.

教学重点:函数的三种表示方法,分段函数的概念.

教学难点:根据不同的需要选择恰当的方法表示函数,什么才算“恰当”?分段函数的表示及其图象.

教学过程:

引入课题

复习:函数的概念;

常用的函数表示法及各自的优点:

(1)解析法;

(2)图象法;

(3)列表法.

新课教学

(一)典型例题

例1.某种笔记本的单价是5元,买_ (_∈{1,2,3,4,5})个笔记本需要y元.试用三种表示法表示函数y=f(_) .

分析:注意本例的设问,此处“y=f(_)”有三种含义,它可以是解析表达式,可以是图象,也可以是对应值表.

解:(略)

注意:

函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;

解析法:必须注明函数的定义域;

图象法:是否连线;

列表法:选取的自变量要有代表性,应能反映定义域的特征.

巩固练习:

课本P27练习第1题

例2.下表是某校高一(1)班三位同学在高一学年度几次数学测试的成绩及班级及班级平均分表:

第一次 第二次 第三次 第四次 第五次 第六次 王 伟 98 87 91 92 88 95 张 城 90 76 88 75 86 80 赵 磊 68 65 73 72 75 82 班平均分 88.2 78.3 85.4 80.3 75.7 82.6 请你对这三们同学在高一学年度的数学学习情况做一个分析.

分析:本例应引导学生分析题目要求,做学情分析,具体要分析什么?怎么分析?借助什么工具?

解:(略)

注意:

本例为了研究学生的学习情况,将离散的点用虚线连接,这样更便于研究成绩的变化特点;

本例能否用解析法?为什么?

巩固练习:课本P27练习第2题

例3.画出函数y = | _ | .

解:(略)

巩固练习:课本P27练习第3题

拓展练习:

任意画一个函数y=f(_)的图象,然后作出y=|f(_)| 和 y=f (|_|) 的图象,并尝试简要说明三者(图象)之间的关系.

课本P27练习第3题

例4.某市郊空调公共汽车的票价按下列规则制定:

(1) 乘坐汽车5公里以内,票价2元;

(2) 5公里以上,每增加5公里,票价增加1元(不足5公里按5公里计算).

已知两个相邻的公共汽车站间相距约为1公里,如果沿途(包括起点站和终点站)设20个汽车站,请根据题意,写出票价与里程之间的函数解析式,并画出函数的图象.

分析:本例是一个实际问题,有具体的实际意义.根据实际情况公共汽车到站才能停车,所以行车里程只能取整数值.

解:设票价为y元,里程为_公里,同根据题意,

如果某空调汽车运行路线中设20个汽车站(包括起点站和终点站),那么汽车行驶的里程约为19公里,所以自变量_的取值范围是{_∈N_| _≤19}.

由空调汽车票价制定的规定,可得到以下函数解析式:

()

根据这个函数解析式,可画出函数图象,如下图所示:

注意:

本例具有实际背景,所以解题时应考虑其实际意义;

本题可否用列表法表示函数,如果可以,应怎样列表?

实践与拓展:

请你设计一张乘车价目表,让售票员和乘客非常容易地知道任意两站之间的票价.(可以实地考查一下某公交车线路)

说明:象上面两例中的函数,称为分段函数.

495098