教案可以帮助教师了解学生的学习情况和需求,以便更好地满足学生的学习需求,从而提高学生的学习效果和自信心。下面给大家整理一些数学教案通用模板,方便大家学习怎么写数学教案通用模板。
教学内容:整数、小数四则混合运算的顺序,包括带有中、小括号的式题,课本第38-39页的例1-3,练习十1-4题。
一、复习
1、口算:
3.6+4.410-5.23.4×0.27.8÷6
1÷47.5÷0.39.8-80÷27.9
6.5×0.20.1×0.513.2+6.80.15÷15
二、新授
(一)、1、教学例1,讲解“级”的含义。
2、做一做第37页
请四位同学板演,其余的做在本子上,教师巡视。
教师讲评。
(二)、教学例3,讲解有括号的算式运算顺序。
0.4×(3.2—0.8)÷1.2
5×〔(3.2+4.06)÷6.05〕
三、全课总结(略)
四、巩固练习
1、说一说练习十1、2题个题的'运算顺序。
2、练习十4
五、课堂作业
练习十3
⑴4.8与2.7的和乘以4.02,积是多少?
⑵35.7除以0.7的商,加上12.5与4.8的积,和是多少?
⑶10.2减去2.5的差,除以0.3与2的积,商是多少?
教学目标:
1、理解5的乘法口诀,会用5的乘法口诀进行计算。
2、培养学生主动获得知识的能力和积极进取的精神。
教学重难点
教学重点:
熟记5的乘法口诀,并比较熟练地应用口诀求积。
教学难点:
根据图意独立写出乘法算式并编出相应的乘法口诀。
教学过程:
一、问题情景
课件显示:小朋友划船
每只船上坐5人,一共有多少人?
小组合作画一张表,并算一算。
船的只数12345
人数5
二、合作探究
以前大家知道了1-4的乘法口诀,今天请同学们自己来研究学编5的乘法口诀。
1、四人小组讨论交流,你是怎样编出口诀的?
2、生汇报教师板书;
1个5是55×1=5一五得五
2个5相加5×2=10二五得十
3个5相加3×5=15三五十五
4个5相加4×5=20四五二十
5个5相加5×5=25五五二十五
3、你发现这些算式或口诀中,乘数、积有什么特点?
点拨:同学们真聪明自己发现规律编出了5的乘法口诀,还知道了5的乘法算式中,随着乘数一个比一个大,积就一个比一个大5。
三、形成应用
1、将5的乘法口诀读一读。
2、同桌互背5的乘法口诀。
3、师生对口令
4、游戏:翻一个数马上说出它与5的积,比一比谁最快。
5、讨论:“想一想”中的算式各用哪一句口诀?
秘密:积的个位是0,乘数应填双数,积的个位是5,乘数应填单数。
四、完成想想做做
1、第1题
学生同桌互相对口诀,以游戏形式完成。
2、第2题
学生独立完成,集体汇报交流。
3、第3题
学生独立完成,集体讨论订正。
4、第4题
学生独立完成,集体交流订正。
5、第5题
老师引导学生读懂题意,独立完成,集体交流。
五、课堂总结
通过今天的学习,你有什么收获呢?
教学目标
1.能够根据具体问题中数量关系,列出一元一次不等式组,解决简单问题。
2.渗透“数学建模”思想。化理论。
3.提高分析问题解决问题能力。
教学重点
分析实际问题列不等式组。
教学难点
1.找实际问题中的不等关系列不等式组。
2.有条理的表达思考过程。
教学过程
一、创设问题情境。
本节课我们一起学习用一元一次不等式组解决一些简单的实际问题。
出示问题:
某公园售出一次性使用门票,每张10元。为吸引更多游客,新近推出购买“个人年票”的售票方法。年票分A、B两类。A类年票每张100元,持票者每次进入公园无需再购买门票。B类年票每张50元,持票者进入公园时需再购买每次2元的门票。你能知道某游客一年中进入该公园至少超过多少次,购买A类年票最合算吗?
二、建立模形。
1.分析题意回答:
①游客购买门票,有几种选取择方式?
②设某游客选取择了某种门票,一年进入该公园x次,门票支出是多少?
③买A类年票最合算,应满足什么关系?
2.讨论交流,列出不等式组。
3.解不等式组,说出问题的答案。
三、应用。
学生讨论、交流。
1.什么情况下,购买每次10元的门票最合算。
2.什么情况下,购买B类年票最合算?
学生清晰、有条理地表达自己的思考过程,且考虑问题要全面。
四、练习。
某校安排寄宿时,如果每项间宿舍住7人,那么有1间虽有人住,但没住满。如果每间宿舍住4人,那么有100名学生住不下。问该校有多少寄宿生?有多少间宿舍?
(提示学生找到本题中的两个不等关系。学生人数,宿舍间数都为整数。解本题时,先独立思考,再小组交流)
五、小结
列一元一次不等式组,解决实际问题的基本步骤是什么?(讨论、交流,指名回答)
第一章勾股定理
1.探索勾股定理(第1课时)
一、学生起点分析
八年级学生已经具备一定的观察、归纳、探索和推理的能力.在小学,他们已学习了一些几何图形面积的计算方法(包括割补法),但运用面积法和割补思想解决问题的意识和能力还远远不够.部分学生听说过“勾三股四弦五”,但并没有真正认识什么是“勾股定理”.此外,学生普遍学习积极性较高,探究意识较强,课堂活动参与较主动,但合作交流能力和探究能力有待加强.
二、教学任务分析
本节课是义务教育课程标准实验教科书北师大版八年级(上)第一章《勾股定理》第一节第1课时.勾股定理揭示了直角三角形三边之间的一种美妙关系,将形与数密切联系起来,在数学的发展和现实世界中有着广泛的作用.本节是直角三角形相关知识的延续,同时也是学生认识无理数的基础,充分体现了数学知识承前启后的紧密相关性、连续性.此外,历勾股定理的发现反映了人类杰出的智慧,其中蕴涵着丰富的科学与人文价值.
为此本节课的教学目标是:
1.用数格子(或割、补、拼等)的办法体验勾股定理的探索过程并理解勾股定理反映的直角三角形的三边之间的数量关系,会初步运用勾股定理进行简单的计算和实际运用.
2.让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法.
3.进一步发展学生的说理和简单推理的意识及能力;进一步体会数学与现实生活的紧密联系.
4.在探索勾股定理的过程中,体验获得成功的快乐;通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化历史,激励学生发奋学习.
三、教学过程设计
本节课设计了五个教学环节:第一环节:创设情境,引入新课;第二环节:探索发现勾股定理;第三环节:勾股定理的简单应用;第四环节:课堂小结;第五环节:布置作业.
第一环节:创设情境,引入新课
内容:2002年世界数学家大会在我国北京召开,投影显示本届世界数学家大会的会标:
会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号.今天我们就来一同探索勾股定理.(板书课题)
意图:紧扣课题,自然引入,同时渗透爱国主义教育.
效果:激发起学生的求知欲和爱国热情.
第二环节:探索发现勾股定理
1.探究活动一
内容:投影显示如下地板砖示意图,引导学生从面积角度观察图形:
问:你能发现各图中三个正方形的面积之间有何关系吗?
学生通过观察,归纳发现:
结论1以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.
意图:从观察实际生活中常见的地板砖入手,让学生感受到数学就在我们身边.通过对特殊情形的探究得到结论1,为探究活动二作铺垫.
效果:1.探究活动一让学生独立观察,自主探究,培养独立思考的习惯和能力;2.通过探索发现,让学生得到成功体验,激发进一步探究的热情和愿望.
2.探究活动二
内容:由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢?
(1)观察下面两幅图:
(2)填表:
A的面积
(单位面积)B的面积
(单位面积)C的面积
(单位面积)
左图
右图
(3)你是怎样得到正方形C的面积的?与同伴交流.(学生可能会做出多种方法,教师应给予充分肯定.)
学生的方法可能有:
方法一:
如图1,将正方形C分割为四个全等的直角三角形和一个小正方形,.
方法二:
如图2,在正方形C外补四个全等的直角三角形,形成大正方形,用大正方形的面积减去四个直角三角形的面积,.
方法三:
如图3,正方形C中除去中间5个小正方形外,将周围部分适当拼接可成为正方形,如图3中两块红色(或两块绿色)部分可拼成一个小正方形,按此拼法,.
(4)分析填表的数据,你发现了什么?
学生通过分析数据,归纳出:
结论2以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.
意图:探究活动二意在让学生通过观察、计算、探讨、归纳进一步发现一般直角三角形的性质.由于正方形C的面积计算是一个难点,为此设计了一个交流环节.
效果:学生通过充分讨论探究,在突破正方形C的面积计算这一难点后得出结论2.
3.议一议
内容:(1)你能用直角三角形的边长,,来表示上图中正方形的面积吗?
(2)你能发现直角三角形三边长度之间存在什么关系吗?
(3)分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度.2中发现的规律对这个三角形仍然成立吗?
勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用,,分别表示直角三角形的两直角边和斜边,那么.
数学小史:勾股定理是我国最早发现的,中国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦,“勾股定理”因此而得名.(在西方文献中又称为毕达哥拉斯定理)
意图:议一议意在让学生在结论2的基础上,进一步发现直角三角形三边关系,得到勾股定理.
效果:1.让学生归纳表述结论,可培养学生的抽象概括能力及语言表达能力;2.通过作图培养学生的动手实践能力.
第三环节:勾股定理的简单应用
内容:
例题如图所示,一棵大树在一次强烈台风中于离地面10m处折断倒下,树顶落在离树根24m处.大树在折断之前高多少?
(教师板演解题过程)
练习:
1.基础巩固练习:
求下列图形中未知正方形的面积或未知边的长度(口答):
2.生活中的应用:
小明妈妈买了一部29in(74cm)的电视机.小明量了电视机的屏幕后,发现屏幕只有58cm长和46cm宽,他觉得一定是售货员搞错了.你同意他的想法吗?你能解释这是为什么吗?
意图:练习第1题是勾股定理的直接运用,意在巩固基础知识.
效果:例题和练习第2题是实际应用问题,体现了数学来源于生活,又服务于生活,意在培养学生“用数学”的意识.运用数学知识解决实际问题是数学教学的重要内容.
第四环节:课堂小结
内容:
教师提问:
1.这一节课我们一起学习了哪些知识和思想方法?
2.对这些内容你有什么体会?与同伴进行交流.
在学生自由发言的基础上,师生共同总结:
1.知识:勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用,,分别表示直角三角形的两直角边和斜边,那么.
2.方法:(1)观察—探索—猜想—验证—归纳—应用;
(2)“割、补、拼、接”法.
3.思想:(1)特殊—一般—特殊;
(2)数形结合思想.
意图:鼓励学生积极大胆发言,可增进师生、生生之间的交流、互动.
效果:通过畅谈收获和体会,意在培养学生口头表达和交流的能力,增强不断反思总结的意识.
第五环节:布置作业
内容:布置作业:1.教科书习题1.1.
2.观察下图,探究图中三角形的三边长是否满足?
教学目的:
1.使学生知道“同样多”、“多些”、“少些”的含义,初步学会用一一对应的方法比较物体的多少。
2.初步培养学生的动手操作能力,渗透“对应”思想。
3.引导学生认真观察,培养学生积极思考、大胆探索的良好品质。
教具、学具准备:圆形、三角形、正方形若干;学生准备5个圆形、5个三角形、5个正方形。
课时:1课时
教学过程:
一、复习:从1数到10
二、导入:昨天我们学习了数一数,今天我们就来学习比一比。
(板书:比一比)
二、新课
(一)同样多
1、看图说话:教师贴出4个圆纸片,学生数一数有几个,再贴出4个三角形纸片,学生数一数有几个。看着这图,你能说一句话吗?那你是怎么知道它们同样多的呢?一个圆纸片对着一个三角形纸片,所以我们就说,圆纸片和三角形纸片同样多。
2、手比一比:在请伸出你的双手,我们用一个指头对着一个指头的方法来比较一下两只手上的手指头是否同样多”(师生一起做,然后同桌互相做)。
3、动动手:教师在黑板上贴3个○(学生跟着在台下摆),要求对着○摆□,□要和○同样多。指名一人在黑板上摆,其余同学在下面摆,摆完后说说摆的方法。
4、同桌左边的同学摆任意个□,右边的同学摆△,使得□和△同样多。说说摆的方法。
5、找一找:在p6、p7的图中找出同样多的东西。
(二)多些、少些:
1、教师贴出4个三角形,学生说是几个,再贴出3个正方形,学生说有几个。问:三角形和正方形同样多吗?你怎么看出来的?(教师伺机连线)教师引导学生:三角形有剩余,正方形没有剩余,我们就说正方形少些,三角形多些,也就是说三角形比正方形多。(板书:多些、少些)
2、教师在黑板上贴2个○和3个△。提问:怎样比较○和△谁多谁少?(同桌同学商量。)指名说。
3、找一找:在p6、p7的图中找出什么东西比什么东西多或少的。
4、学生动手操作:
①第一行摆3个○,在○下面摆△,△要比○多1个。
②第一行摆4个□,在□下面摆△,△要比□少2个。
③要使下图中第一排比第二排多2个圆,应该怎么办?
三、练习
1、p11、12练习一1-4题
2、找一找我们教室里有什么东西是同样多的,什么东西是多些,什么东西是少些的?
四、小结:
今天我们学会比较多少,明天我们要学习比较长短,请同学们每人准备一把尺子,一支用过的铅笔。
教学反思:
本学期高一数学备课组的工作紧紧围绕学校、教科处及教研组的计划安排来开展,以教学改革为动力、以学校创建为前提、以提高课堂效率为目的、以自主教育为模式、以现代信息技术为手段、以培养学生的创新能力为目标,全面改进教育教学方法,更新教育观念,改变传统教学模式,培养学生综合素质,搞好本学期工作。
一、指导思想
以教研组工作计划为指导,按照均衡、优质、高效原则,精诚团结,和谐创新,加强科组建设,提高高一数学备课组的整体实力;努力完成本学期的教学目标,进一步提高作为未来公民所必要的数学素养,以满足学生发展与社会进步的需要。这学期的工作重点是继续进行新课标和新教材的研究,要着重抓好差生辅导和尖子生的培养,让绝大部分学生跟上教学进度。
二、工作思路
1、在学校科研处和教务处的领导下,有计划地组织好全组教师的学习与培训工作,特别是搞好新课程标准和新教材的学习、研究和交流,落实学校的办学理念。推广现代教育科研成果,定期开展多种形式的教研活动。
2、以组风建设为主线,以新课程标准为指导,以教法探索为重点,以构建主动发展型课堂教学模式为主题,以提高队伍素质,提高课堂效率,提高教学质量为目的。深化课堂教学改革,努力改善教与学的方式。
3、教学研究要以集体备课为基础,以作课、听课、评课活动以及出考卷活动为载体,以课题研究、论文、案例撰写为提高,在研究状态下理性的工作。培养本组教师养成教学反思的习惯,
三、教材分析(结构系统、单元内容、重难点)
必修5:
第一章:解三角形;重点是正弦定理与余弦定理;难点是正弦定理与余弦定理的应用;
第二章:数列;重点是等差数列与等比数列的前n项的和;难点是等差数列与等比数列前n项的和与应用;
第三章:不等式;重点是一元二次不等式及其解法、二元一次不等式(组)与基本不等式;难点是二元一次不等式(组)及应用;
必修2:
第一章:立体几何初步。重点是空间几何体的三视图和直观图及表面积与体积,直线与平面平行及垂直的判定及其性质;难点是空间几何体的三视图,直线与平面平行及垂直的判定及其性质;
第二章:直线与方程;重点是直线的倾斜角与斜率及直线方程;难点是如何选择恰当的直线方程求解题目;圆与方程;重点是圆的方程及直线与圆的位置关系;难点是直线与圆的位置关系。
四、学情分析
经过一学期的观察发现学生的基础知识水平、学习自觉性与基本学习方法比较欠缺,学生心理不稳定,空间思维、抽象思维、逻辑思维较差,而本学期所要学习的内容包含了高中数学中重要而难学的数列、不等式、立体几何部分,因而教学时尽可能以课本为本,注重基础和规范,不随意拔高难度,努力使绝大部分学生打好三基。教学时在完成市教学进度的前提下,尽可能的放慢速度,确保绝大部分学生的学习质量。平时教学中老师要注意不断鼓励和欣赏学生的优点和进步,使学生不断体验到学习数学的乐趣。平时测试要注重考查三基,严格控制难度,使绝大部分学生及格,使学生体验到进步和成功的喜悦。同时需进一步加强学法指导,多于学生进行情感交流。
五、工作目标
1、狠抓教学常规和学习常规的贯彻落实。在数学教学研究中努力做到三主(教学研究以学习理论为主导、大纲教材课程标准为主体、探索教学模式为主线)和三有(教学研究要对教学实践有指导、对教学质量有促进、对教师有提高)。
2、加强现代教育教学理论的学习,积极进行课堂教学改革试验、逐步形成本学科特色,把我组建设成一个团结协作、富有开拓创新精神的先进集体。
3、把对新课程标准的学习与对新教材的研究结合起来,力求使每一位数学老师都能较好地领会新课程标准的基本理念和目标,较好地把握数学学习内容中有关数感、符号感、空间观念、统计观念、应用意识、推理能力等核心概念的内涵和要求,初步掌握所教教材的结构特点、每章每节教材的地位、作用和目标要求。
4、认真做好义务教育数学实验教材和高中新教材的阶段总结,加强教法的研究,注意总结和发现典型的教学案例,积极组织本组教师做好资料、信息收集工作,撰写教育教学论文、案例,争取在全国等各级论文评比中获奖。
六、具体措施:
1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。
2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。
3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。
4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。
5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。
6、重视数学应用意识及应用能力的培养。
7、积极做好集体备课工作,达到内容统一、进度统一、目标统一、例习题统一、资料统一、测试统一;上好每一节课,及时对学生的学习进行观察与指导;课后进行有效的辅导;进行有效的课堂反思。
教学内容:
《反比例的意义》是六年制小学数学(人教版)第十二册第一单元《比例》中的内容。是在学过“正比例的意义”的基础上,让学生理解反比例的意义,并会判断两个量是否成反比例关系,加深对比例的理解。
学生分析:
在此之前,他们学习了正比例的意义,对“相关联的量”、“成正比例的两个量的变化规律”、“如何判断两个量是否成正比例”已经有了认识,这为学习《反比例的意义》奠定了基础。
设计理念:
学习方式的转变是新课改的显著特征,就是把学习过程中的分析、发现、探究、创新等认识活动凸显出来。在设计《反比例的意义》时,根据学生的知识水平,对教学内容进行处理,克服教材的局限性,限度地拓宽探究学习的空间,提供自主学习的机会。
教学目标:
1.通过探究活动,理解反比例的意义,并能正确判断成反比例的量。
2.引导学生揭示知识间的联系,培养学生分析判断、推理能力
教学流程:
一、复习铺垫,猜想引入
师:(1)表格里有哪两个相关联的量?(2)这两个相关联的量成正比例关系吗?为什么?
2.猜想
师:今天我们要学习一种新的比例关系——反比例关系。(板书:反比例)
师:从字面上看“反比例”与“正比例”会是怎样的关系?
生:相反的。
师:既然是相反的,你能联系正比例关系猜想一下,在反比例关系中,一个量会怎样随着另一个量的变化而变化?它们的变化会有怎样的规律?
生:(略)
反思:根据学生认知新事物大多由猜而起的规律,从概念的名称“正、反”两宇为切入点,引导学生“顾名思义”,对反比例的意义展开合理的猜想,激起学生研究问题的愿望。
二、提供材料,组织研究
1.探究反比例的意义
师:大家的猜想是否合理,还需要进一步证明。下面我提供给大家几张表格,以小组为单位研究以下几个问题。
(1)表中有哪两个相关联的量?
(2)两个相关联的量,一个量是怎样随着另一个量的变化而变化的?变化规律是什么?
2.小组讨论、交流。(教师巡回查看,并做适当指导。)
3.汇报研究结果
(在汇报交流时,学生们纷纷发表自己的看法。当分析到表3时,大家开始争论起来。)
生1:剩下的路程随着已行路程的扩大而缩小,但积不一定。
生2:已行路程十剩下路程=总路程(一定)。
生3:我认为第一个同学的说法不准确,应该换成“增加”和“减小”……
(最后通过对比大家达成共识:只有表2和表3的变化规律有共性。)
师:表2和表3中两个量的变化规律有哪些共性?(生答略。)
师:这两个相关联的量叫做成反比例的量,它们的关系叫做反比例关系。(完成板书。)
师:如果用字母A和B表示两个相关联的量,用C表示它们的积,你认为反比例关系可以用哪个关系式表示?[板书]
反思:教材中两个例题是典型的反比例关系,但问题过“瘦”过“小”,思路过于狭窄,虽然学生易懂,但容易造成“知其然,而不知其所以然”。通过增加表3,更利于学生发现长×宽=长方形的面积(一定)这一关系式,有助于学生探究规律。同时还增加了表1、表4,把正比例关系、反比例关系、与反比例雷同(“和”一定)的情况混合在一起,给学生提供了甄别问题的机会。
4.做一做(略)
5.学习例6
师:刚才我们是参照表格中的具体数据来研究两个量是不是成反比例关系,如果这两个量直接用语言文字来描述,你还会判断它们成不成反比例关系吗?(投影出示例题。)
三、巩固练习,拓展应用
1.基本练习。(略)
2.拓展应用。
师:你能举一个反比例的例子吗?(先自己举例,写在本子上,再集体交流。)
交流时,学生们争先恐后,列举了许多反比例的例子。课正在顺利进行时,一个同学举的“正方形的边长×边长=面积(一定),边长和边长成反比例”的例子引起了学生们的争论。,教师没有马上做判断,而是问学生:“能说出你的理由吗?”有的学生说:“因为乘积一定,所以边长和边长成反比例关系。”对他的意见有的同学点头称是,而有的同学却摇头……忽然,一名同学像发现新大陆一样大声叫起来:“不对!边长不随着边长的扩大而缩小!这是一种量!”一句话使大家恍然大悟:对啊!边长是一种量,它们不是相关联的两个量,所以边长和边长不成反比例。后来又有一名同学举例:“边长×4=正方形的周长(一定),边长和4成反比例。”话音刚落,学生们就齐喊起来:“不对!边长和4不是相关联的两个量。”
反思:通过“你能举一个反比例的例子吗?”这样一个开放性练习题,让学生联系已有的知识,使新旧知识有机结合,帮助学生建立起良好的认知结构,这同时也是对数量关系一次很好的整理复习机会,通过举例进一步明确如何判断两个量是否成反比例。
3.综合练习
四、总结
反思:
《数学课程标准》中指出:“学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。”而现行的小学数学高年级教材,内容偏窄、偏深,部分知识抽象严密、逻辑性强、脱离学生的生活实际,与新教材相比明显滞后。如何将新的课改理念与旧教材有机整合,是我们每一个数学教师应该思考探索的课题。
教学目标
1.认识和掌握长方体的特征,理解长、宽、高的概念.
2.培养学生的观察能力、操作能力及分析综合和抽象概括的能力,发展空间观念.
教学重点
掌握长方体的特征,认识长方体的长、宽、高.
教学难点
初步建立“立体图形”的概念,形成表象.
教学过程
一、复习引入.
1、教师谈话:我们已学过一些几何图形,你们还记得是哪些吗?
(长方形、正方形、三角形、平行四边形和梯形)
2、出示下面的实物.
教师提问:这些物体是什么形状的呢?
老师明确:以前学习的长方形、正方形、三角形、平行四边形和梯形等都是平面上的图形,叫做平面图形.现在看到的这些图形都占有一定的空间,我们把它们叫做立体图形.
教师提问:在低年级时我们曾认识过长方体和正方体,谁能找出这些物体中的长方体和正方体?
引入:这一单元我们要继续深入研究长方体和正方体,今天先学习对长方体的认识.
(板书课题:长方体的认识)
二、学习新课.
在日常生活中,你还见过哪些物体的形状是长方体的?(学生举例)
(一)认识长方体的面.
1、教师演示告诉学生什么是长方体的面,并让学生摸一摸.
2、让学生按照前、后、上、下、左、右的顺序,数一数长方体共有几个面.再观察每个面都是什么形状的.(板书:长方体有6个面,6个面都是长方形.)
3、提问:6个面中有没有不都是长方形的情况呢?
(板书:也可能有两个相对的面是正方形)
4、提问:长方体的6个面还有什么特征呢?(板书:相对的面完全相同)
5、总结特征:长方体有6个面,6个面都是长方形(也可能有两个相对的面是正方形),相对的面完全相同.
(二)认识长方体的棱.
1、让学生摸一摸长方体两个面相交的地方,说明这叫长方体的棱.
2、让学生把直尺放在棱上,发现直尺平平的.说明棱是直的,是线段,可以度量.
3、提问:长方体有多少条棱?想一想,怎样数才能做到不重复,不遗漏?
引导学生把棱分成三组,也可用同一颜色把每组互相平行的棱标出来.数出每组各有4条棱,有3组,一共有12条棱.(板书:有12条棱)
4、让学生量一量每组中棱的长度,说一说发现了什么?
(板书:互相平行的4条棱的长度相等)
5、总结特征:有12条棱,互相平行的4条棱的长度相等
(三)认识长方体的顶点.
1、让学生摸一摸长方体三个面相交的地方,说明这叫长方体的顶点.
2、数一数长方体有几个顶点.(按照一定的顺序数)
(板书:有8个顶点)
(四)总结长方体的特征.
长方体是由6个长方形围成的立体图形(也可能有两个相对的面是正方形),它有12条棱,8个顶点.在一个长方体中,相对的面完全相同,相对的棱长度相等.
(五)认识长、宽、高.
出示长方体框架,引导学生观察并回答:
1、长方体的12条棱可以怎样分组?每组棱的长度有什么关系?
(分3组,每组4条棱长度相等)
2、相交于一个顶点的棱有几条?它们的长度有什么特点?
(3条棱,3条棱的长度不相等.)
3、教师小结:由于有三组互相平行的棱,每组棱的长度相等,我们可以取相交于一个顶点的3条棱作代表,把相交于一个顶点的3条棱的长度分别叫做长方体的长、宽、高.
4、指导学生理解长、宽、高的概念.
可让学生把长方体横放、竖放、侧放,分别说出长、宽、高,使学生认识到长方体的形状和大小是由它的长、宽、高决定的.
(六)教学识图,发展空间观念.
1、让学生把长方体学具放在课桌左上角,引导学生观察,并提问:你们能看到几个面?
2、教师启发提问:怎样用图表示出来呢?可同时板书画图.
说明:虚线表示看不见的三条棱,并让学生指出长、宽、高,教师板书.
三、反馈练习.
1、按照教科书所给的图样,用硬纸做一个长方体,再量一量它的长、宽、高.
2、拿一个火柴盒,量一量它的长、宽、高各是多少?再说一说每个面的长和宽是多少?
3、看图说出下面每个长方体的长、宽、高各是多少?
4、说出右面的物体是什么形状,并且说明:
①它的上面是什么形,长和宽各是多少?
②它的右侧面是什么形,长和宽各是多少?
③它的前面是什么形,长和宽各是多少?
④它的下面和后面各是什么形?长和宽各是多少?
四、课堂小结.
今天我们学习了长方体的特征,那么在长方体的6个面中只能有两个面是正方形吗?如果其它的面也是正方形,那会出现什么情况呢?同学们想一想,这是下节课要研究的问题.
五、板书设计
长方体的认识
面:长方体有6个面,6个面都是长方形(也可能有两个相对的面是正方形),相对的面完全相同.
棱:两个面相交的边叫做棱.有12条棱,互相平行的4条棱的长度相等
顶点:三条棱相交的点叫做顶点.有8个顶点.
相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高.
区别圆形和椭圆形
活动目标:
1、尝试在圆形的基础上建构椭圆形,能区别出圆形和椭圆形的不同。
2、能用一种颜色建构椭圆形。
3、引发幼儿学习图形的兴趣。
4、引导幼儿积极与材料互动,体验数学活动的乐趣。
5、引发幼儿学习的兴趣。
活动准备:
经验准备:认识了椭圆形和圆形、已学过插空心圆。
物质准备:各色雪花片、范例。
活动过程:
1、观察圆形与椭圆形,区别其不同之处。
出示空心圆形和空心椭圆形的范例
提问:
这是什么图形?他们有什么不同?
2、讨论建构方法。(愿意用语言表示。)
提问:
怎样把圆形变成椭圆形?
请个别幼儿上来进行尝试,将空心圆形变成空心椭圆形。
3、幼儿建构,教师指导。
提醒幼儿用一种颜色建构,鼓励能力强的幼儿建构出蛋宝宝的手脚。
4、评价。
自由评价:向别人介绍自己将空心圆形变成空心椭圆形的方法。
一、注重指导学生复习方法,提高复习效率:
1、指导学生巧复习
数学学习中概念,公式,计算等等是很枯燥的。俗话说:"熟能生巧。"良好的复习方法是提高复习效率的重要途径。利用一切有效手段充分调动学生复习的主动性,创造性知识和技能。教师指导复习时要做到四点:第一是定调。给出复习“导引单”,学生依“纲”复习,掌握基本的知识和技能。第二是给法。对复习方法给予具体指导。善于抓住重点组织复习。第三是树靶。对复习中的疑难问题展开辨论,审视真伪。第四是立样。对辨论的结果给出是与否的肯定回答,澄清模糊认识,树立正确观点。
2、指导学生定好学习计划
复习前,教师应当认真钻研新《课程标准》和小学数学复习指导说明,让学生明确毕业考试的方向、内容和题形,明确复习内容,指导学生合理分配复习时间,根据每个学生的实际情况,确定复习进度。这样让学生心中有谱,克服盲目性,积极的投入到复习中去。
首先我们用一半的时间指导学生复习课本的内容,重在复习教材中的重点、难点、考点和疑点。方法是教师指导与学生自主复习相结合。学生在复习中注重查漏补缺,教师注重解疑和检查。在复习中注重发现学生在综合练习中出现的问题、及时检查学生知识掌握情况及对知识的运用的能力。并要做到及时反馈、及时补缺补差,把遗漏点降到最低。然后用四分之一的时间进行阶段复习,把内容相关的单元内容分项复习。比如:数的复习,几何知识的复习等等。结合不同的复习内容。确定不同的复习重点难点分类整理、梳理,强化复习的系统性。这样有利于知识的系统化和对其内在联系的把握,便于融合贯通。做到梳理--训练--拓展,有序发展,真正提高复习的效果。最后用四分之一的时间进行综合复习,,各种题型,等等全面开展训练.在每一次综合复习中学生的能力呈现螺旋上升状态.
3.指导学生摸索技巧与规律,提高能力
能力测试是现代数学测试的主要方面,如实践能力.创新能力.等。因此在复习过程中,要指导学生定期做一些计算练习及创新练习。知道学生抓住解题的关键条件及应用题中的数学关系,归纳出规律和方法;指导学生排除障碍;对一些看似复杂的难题,引导学生斩枝去叶,找出其核心部分,更快,更准地对题意进行理解,从而有效地完成规定的答题。在这一过程中,提醒学生切勿死记硬背,重在开阔视野,培养实践能力,摸索技巧与规律。
二.注重研究教法,让复习省时、高效
1.准确处理好集中教学与精讲的关系
“集中教学是强化教学,它集中思想、集中时间、集中一切手段与方法,创造环境与条件,突破难点,带动全面”。根据这一原则,我觉得应该摆脱原有知识体系的束缚,打破原有知识结构,重新调整、编辑知识体系,将那些基础知识重新编排、重新组合。通过超前集中、随机集中、综合集中,以及启发、引导、讨论、归纳、综合等一系列双边活动使知识点、热点、重点具体化。这即夯实了基础,突出了重点,又给了学生新的感受。
精讲是指对学生自主学习的积极引导,尤其是针对前面的自主复习活动和讨论过程中思而不解或有误的问题进行讲解,目的在于扫除学生的学习障碍,指引学习的途径,培养正确的学习方法。复习中选择一些恰当、新视觉、最能体现复习内容本质特征、唤起学生思维灵感而引起思维共鸣的例题而施教,达到温故而知新。择例时要做到“三性”。一是准确性;符合新课程标准和教材要求,谨防过深或过偏而加重学生过重的课业负担;二是典范性:体现重要知识点,其有“范例”作用;三是综合性:体现各类知识的横向联系,培养学生综合解题能力。一般而言,复习时应精选学生平时漏缺的知识,精选学生易混淆的知识,精选带有关键性、规律性的知识。
2、教师要准备好每一堂课
不管是复习基础知识,还是复习重点,难点及要点;也不管是专题训练,还是试卷评讲,教师都要对所授内容认真分析,精心准备。教师要在课下仔细钻研教材与新《课程标准》,要把握教材内容,善于提炼和归纳教材的知识要点和训练重点,要把握准知识的广度与深度。在复习过程中,我们应重视对教材的使用,切不可抛开教材,大搞所谓的“标准化训练”,盲目追求学生能力的提高,轻视对基础知识的复习。
3.精心编排练习题
我们应该把这一点作为重要的一点提出来,我觉得精心编排练习题是实施教学论断和反馈的好办法。要坚持每天布置适量的习题作业,从作业中发现问题,并且引导学生集体讨论,利用课余时间针对问题进行个别纠正,这一方法行之有效。较好地贯彻了“因才施教",易于操作,效果明显,复习中配以灵活多变的训练,能达到巩固知识、理解规律、强化记忆、灵活应用知识的目的。首先在训练的内容上要活。要选择内容新颖、规律隐藏、思路灵活的习题训练,创造新的思维意境。其次,在训练层次上要活。采取巩固训练、模仿训练、变式训练和综合训练等灵活方式。再次在训练形式上要活。加强“一题多变”的训练。尽可能覆盖知识点、网络知识线、扩大知识面,增强应变能力。加强“一题多解”的训练,寻找多种解题途径,择其精要解题方法,逐步提离学生的创新能力。练习题不在于多,一道好的题目,往往能“牵一发而动全身”,起到事半功倍的作用。这里指的练习题也不仅仅指动笔的书面作业题,还包括动口的讨论题和动手的实践操作题等。要在众多的复习资料中挑选和重心组织质量高、针对性较强的题目(题组),要重视根据教学实际和当前的教改形势创造设计一些新颖的题目。
4,充分相信学生,放手让学生自主整理复习,及时评价
复习课必须针对知识的重点、学习的难点、学生的弱点,引导学生按一定的标准把有关知识进行整理、分类、综合,这样才能搞清楚来龙去脉。教学时应放手让学生整理知识,形成各异、互助评价,开展争辨。这样有利于主体性的发挥,学生主动参与,体验成功,同时也可以培养他们的概括能力。在进行阶段性复习时,结合每一单元的内容进行专项训练,采用自主复习的形式,反复巩固基础知识,强化运用能力,提高解题技巧和解题速度。学生不但可以自己查阅资料,收集信息,独立式学习,还可以自由选择学习内容与方式,自己控制学习进度和方向。自始至终积极参与活动,成为真正意义上学习的主人。
另外,总复习期间,六年级数学组教师在每一节课之前互相研究每节课怎样上,如何组织,采用何种方法,在上完每节课后,要用较少的时间及时交流课堂中的疑难点,处理方法,让教师迅速成长。在学生方面,值得一提的是通过开展“四自”活动:自订一本数学改错本,自制一本数学笔记,自办一期数学小报,自出一份期末试卷,并进行交流、评比,让学生充分享受成功的喜悦,以不断的成功提高复习效果。
总而言之,采用自主复习的形式,可以让“能飞的飞起来”,“能跑的跑起来”,“能走的走起来”,使不同层次的学生都有所提高。小学毕业的最后阶段,就象长跑运动员最后的冲刺阶段,教师要及早精心安排,使学生的能量充分的发挥出来,才能得到最满意的结果。
教学目标:
知识目标:初步了解复式统计表的格式,能正确地填写表格,并对表中数据进行合理分析。
过程目标:经历统计的全过程,体会复式统计表的产生及其优越性,增强统计的意识和能力。
情感目标:感受统计是一项重要的工作,它与生活的紧密联系,增强数学学习兴趣。
学情分析:
这部分内容是在学生二年级已经学习了用简单的方法收集和整理数据;初步认识了单式统计表的基础上进行学习的。学生已经对统计表的结构填写方法、对表内数据的分析有了一定的基础。通过本节课的学习,引导学生对多张单式统计表进行合并,绘制出复式统计表。
教学重点:
认识复式统计表的结构,学会填写复式统计表,并能对统计表作简单分析。
突破方法:通过自主探究、合作学习,让学生在小组交流中掌握简单的数据分析的方法。
教学难点:
使学生形成统计观念。学会用统计的方法解决实际问题
突破方法:通过创设情境,让学生真正投入到统计的全过程中去。
教学过程:
一、创境导入
1、创设情景,提出问题
师:孩子们,学数学有用吗?在哪儿有用?
生自由回答:能帮助我们解决生活中的问题。
2.师:孩子们,最近课间活动时,我们班总喜欢闹矛盾,出现一些不和谐的现象。我在想,这是怎么回事呢?为什么在课间活动时会出现这种现象呢?为此我下了功夫,做了调查,请看大屏幕(课件出示照片)
二、探究新知
1.出示活动照片:
师:这是我拍的一些你们课间活动的照片。孩子们在干什么呢?
生观察照片说说是些什么活动?
师:现在给你1分钟思考:你最常做的是哪一项课外活动?
2.出示4张单式统计表。
师:有答案了吧,现在我想又快又清楚地知道我们班同学最经常做的哪项活动,该采取什么方式进行调查呢?
生:全班举手表决。
2、收集整理数据,填写统计表。
3、解读分析,制造冲突
抢答游戏:
(1)课间看书的男生多还是闲逛的男生多?
(2)看书的女生多还是跳绳的男生多?
(3)闲逛的男生多还是闲逛的女生多?
(4)课间男生最喜欢干什么?女生呢?
制造冲突:在刚才的抢答游戏中你有什么感受?
生:找条件很麻烦,
师:那怎样解决?
生:合并成一张表
3.动手操作,解疑合探
小组合作完成,比比哪组最快。
学生展示合并过程,让学生说清楚为什么可以这样合并?(重复的地方去掉,更简洁)
师:孩子们,你们真了不起,创造了这样一个4合1的统计表,我们给他取一个名字叫复式统计表,这就是我们今天学习的内容。师板书:复式统计表
师:为什么取这样的名字?
师小结板书:它把多张单式统计表合并复式统计表。
4、认识表头
师:我们来看看这个新朋友,你觉得哪里不合理,你想怎样改呢?
生说。引出表头。
请学生大声地介绍一遍表头。
5、变式表格
师:现在我把这个复式统计表变个样,你们还能看得懂吗?谁来说说它的组成。看来,他真的懂了,现在你们能这个表格填完整吗?
生说,再填数据。
6、感受优势
师:现在我们再来回答刚才的问题:
(1)课间看书的男生多还是闲逛的男生多?
(2)看书的女生多还是跳绳的男生多?
(3)闲逛的男生多还是闲逛的女生多?
(4)课间男生最喜欢干什么?女生呢?
生再抢答,从而体会复式统计表的优势。
师:这样观察起来确实更方便了吧。这就是咱们复式统计表的优点。
7、分析数据
现在我们就来解决课前提出来的问题:为什么我们班课间会闹矛盾?
你们能读出这些数据背后的信息?
生:少拍球,会有危险。少闲逛,多看书。
师:看来用数据说话比老师说十遍、百遍更有用。这也是我们统计的最终目的。
三、生活中的复式统计表
师:在我们的生活中,你见过复式统计表吗?
学生自由发表意见。
师展示:生活中的复式统计表如课程表、比赛、成绩
四、巩固练习
[课件出示]金牌统计表
师:孩子们,这张复式统计表完整了吗?
[根据回答依次出示:国家届数]
找数据及数据的意义
请问28表示什么意思?[点击课件圈出28]
请问23表示什么意思?[点击课件圈出23]
(3)快速抢答
A、[课件出示]中国获得的金牌一届比一届多。
B、[课件出示]俄罗斯获得的金牌一届比一届少。
C、[课件出示]每届都是美国获得的金牌最多。
(4)增加行与列
五、课堂总结
师:这节课,学得开心吗?有收获吗?
一、教学目标:
1、知识与技能:
(1)结合实例,了解正整数指数函数的概念.
(2)能够求出正整数指数函数的解析式,进一步研究其性质.
2、过程与方法:
(1)让学生借助实例,了解正整数指数函数,体会从具体到一般,从个别到整体的研究过程和研究方法.
(2)从图像上观察体会正整数指数函数的性质,为这一章的学习作好铺垫.
3、情感.态度与价值观:使学生通过学习正整数指数函数体会学习指数函数的重要意义,增强学习研究函数的积极性和自信心.
二、教学重点:正整数指数函数的定义.教学难点:正整数指数函数的解析式的确定.
三、学法指导:学生观察、思考、探究.教学方法:探究交流,讲练结合。
四、教学过程
(一)新课导入
[互动过程1]:
(1)请你用列表表示1个细胞分裂次数分别为1,2,3,4,5,6,7,8时,得到的细胞个数;
(2)请你用图像表示1个细胞分裂的次数n()与得到的细胞个数y之间的关系;
(3)请你写出得到的细胞个数y与分裂次数n之间的关系式,试用科学计算器计算细胞分裂15次、20次得到的细胞个数.
解:
(1)利用正整数指数幂的运算法则,可以算出1个细胞分裂1,2,3,4,5,6,7,8次后,得到的细胞个数
分裂次数12345678
细胞个数248163264128256
(2)1个细胞分裂的次数与得到的细胞个数之间的关系可以用图像表示,它的图像是由一些孤立的点组成
(3)细胞个数与分裂次数之间的关系式为,用科学计算器算得,所以细胞分裂15次、20次得到的细胞个数分别为32768和1048576.
探究:从本题中得到的函数来看,自变量和函数值分别是什么?此函数是什么类型的函数?细胞个数随着分裂次数发生怎样变化?你从哪里看出?
小结:从本题中可以看出我们得到的细胞分裂个数都是底数为2的指数,而且指数是变量,取值为正整数.细胞个数与分裂次数之间的关系式为.细胞个数随着分裂次数的增多而逐渐增多.
[互动过程2]:问题2.电冰箱使用的氟化物的释放破坏了大气上层的臭氧层,臭氧含量Q近似满足关系式Q=Q00.9975t,其中Q0是臭氧的初始量,t是时间(年),这里设Q0=1.
(1)计算经过20,40,60,80,100年,臭氧含量Q;
(2)用图像表示每隔20年臭氧含量Q的变化;
(3)试分析随着时间的增加,臭氧含量Q是增加还是减少.
解:(1)使用科学计算器可算得,经过20,40,60,80,100年,臭氧含量Q的值分别为0.997520=0.9512,0.997540=0.9047,0.997560=0.8605,0.997580=0.8185,0.9975100=0.7786;
(2)用图像表示每隔20年臭氧含量Q的变化,它的图像是由一些孤立的点组成.
(3)通过计算和观察图形可以知道,随着时间的增加,臭氧含量Q在逐渐减少.
探究:从本题中得到的函数来看,自变量和函数值分别又是什么?此函数是什么类型的函数?,臭氧含量Q随着时间的增加发生怎样变化?你从哪里看出?
小结:从本题中可以看出我们得到的臭氧含量Q都是底数为0.9975的指数,而且指数是变量,取值为正整数.臭氧含量Q近似满足关系式Q=0.9975t,随着时间的增加,臭氧含量Q在逐渐减少.
[互动过程3]:上面两个问题所得的函数有没有共同点?你能统一吗?自变量的取值范围又是什么?这样的函数图像又是什么样的?为什么?
正整数指数函数的定义:一般地,函数叫作正整数指数函数,其中是自变量,定义域是正整数集.
说明:1.正整数指数函数的图像是一些孤立的点,这是因为函数的定义域是正整数集.2.在研究增长问题、复利问题、质量浓度问题中常见这类函数.
(二)、例题:某地现有森林面积为1000,每年增长5%,经过年,森林面积为.写出,间的函数关系式,并求出经过5年,森林的面积.
分析:要得到,间的函数关系式,可以先一年一年的增长变化,找出规律,再写出,间的函数关系式.
解:根据题意,经过一年,森林面积为1000(1+5%);经过两年,森林面积为1000(1+5%)2;经过三年,森林面积为1000(1+5%)3;所以与之间的函数关系式为,经过5年,森林的面积为1000(1+5%)5=1276.28(hm2).
练习:课本练习1,2
补充例题:高一某学生家长去年年底到银行存入2000元,银行月利率为2.38%,那么如果他第n个月后从银行全部取回,他应取回钱数为y,请写出n与y之间的关系,一年后他全部取回,他能取回多少?
解:一个月后他应取回的钱数为y=2000(1+2.38%),二个月后他应取回的钱数为y=2000(1+2.38%)2;,三个月后他应取回的钱数为y=2000(1+2.38%)3,,n个月后他应取回的钱数为y=2000(1+2.38%)n;所以n与y之间的关系为y=2000(1+2.38%)n(nN+),一年后他全部取回,他能取回的钱数为y=2000(1+2.38%)12.
补充练习:某工厂年产值逐年按8%的速度递增,今年的年产值为200万元,那么第n年后该厂的年产值为多少?
(三)、小结:1.正整数指数函数的图像是一些孤立的点,这是因为函数的定义域是正整数集.2.在研究增长问题、复利问题、质量浓度问题中常见这类函数。
教学目标:
1. 知识目标: 结合实例和具体活动,感知镜面对称现象。掌握镜子内外图形对称、左右错位的规律,能利用镜子寻找对称轴(特别是不能对折的物体)。
2. 能力目标: 引导学生观察、探索、发现、交流,经历探索镜面对称现象特征的过程,使学生学会从数学的角度解释生活,发展学生的空间观念和创新能力。
3. 情感目标: 感受数学与生活的密切联系,激发学生的学习兴趣,使每个学生都能在活动中体验成功的喜悦。
教学重点:
探索镜面对称的一些特征。
教学难点:
感知镜面对称现象,发展空间知觉和空间观念。
教学准备:
课件,镜子。
教学过程:
一、讲故事,引入新课
1. 讲《猴子捞月》的寓言故事。 猴子在路边散步,看到天空高挂一轮圆月;猴子走到井边,发现井边有一轮圆月,猴子以为天上的月亮掉到了井里;猴子大声叫喊,同伴扛来长长的网兜。众猴子怎么也捞不出“月亮”。 问题:“这是什么原因?”(不是月亮掉到井里,而是井水倒映出月亮。) “在生活中,你们好有没有发现类似的现象?”(照镜子时,出现的现象;光滑的地板也会出现倒影等。)
2. 揭示课题。
(1)总结,说明以上几种现象的特征。
(2)板书课题:镜子中的数学。
二、组织活动
1. 教师示范。
(1)在黑板上贴一个大的黑体字——“王”的一半。
(2)把镜子放在虚线上(对称轴),让全班学生观察镜子里的图形和整个图形。
(3)让学生说一说看到了什么?有什么发现?(看到“王”字,镜子里的图形是镜子外图形的对称图形。)
(4)让学生试一试。
2. 试一试。
第(1)题: 让学生把镜子放在虚线上,看看镜子里的图形和整个图形。 说一说,看到了什么。 在书上画出对称图形。 说一说,这条虚线在对称图形中称什么?
第(2)题
(1)镜子中的小女孩是举起了左手,小女孩其实举起的是哪只手?
(2)从镜子你能知道现在是几点吗?
(3)小组讨论:你发现了镜子中有什么数学学问?究竟小女孩照镜 子时是几时?
(4)小组代表汇报小组讨论的成果。
3. 小游戏
模拟照镜子的游戏。
师:假设苏老师站在镜子前,谁来做镜子中的苏老师呢?
(师生表演。)
采访镜子中的人:你为什么能做得这么准确?
(同桌互相做游戏,请一组学生全班展示。)
三、归纳小结,提升认识
师:今天同学们有什么收获?你的心情怎样?
(评析引导学生学会反思,培养学生的总结归纳能力,关注学生情感。)
教学目标:
1、使学生从数学的角度认识放大与缩小现象。
2、知道图形按一定的比放大或缩小后,只是大小发生了变化,形状没变,从而体会图形相似变化的特点。
3、能在方格纸上按一定的比将简单图形放大或缩小。
教学重点:
使学生知道图形按一定的比放大或缩小后,只是大小发生了变化,形状没变。
教学难点:
体会图形相似变化的特点。
教学过程:
一、导入
1、上两节课我们学习了比例尺,知道比例尺表示的是图上距离和实际距离的比,是按一定的比把实际距离进行放大或缩小。请同学们观察教科书P55的图。
2、说说图中反映的的是什么现象?哪些是将土体放大了?哪些是将物体缩小了?生活中还存在许多放大与缩小的现象,这节课我们就来研究“图形的放大与缩小”。
二、新授
1、教学例4
(1)
出示例4,让学生说说题中要求的按“2∶1”放大图形什么意思?(按2∶1放大图形也就是图形的各边放大到原来的2倍)
(2)学生尝试着画出正方形和长方形放大后的图形。
(3)
画直角三角形时,引导学生思考:直角三角形的斜边不能看出是多少格,怎么办?(只要把两直角边放大到原来的2倍,再连成封闭图形就可以了)画完后通过量一量的方式,发现放大后的斜边的长度也是原来的2倍。
(4)
观察对比原图形和放大后的图形,说说有什么变化?(一个图形按2∶1的比放大后,图形各边的长度放大到原来的2倍,但图形的形状没变)
2、例4的延伸
(1)如果把放大后的这组图形的各边再按1∶3缩小,图形又会发生什么变化?学生讨论后的出:A、图形缩小了,但形状不变。
B、缩小后的图形各条边分别缩小到原来长度的。
(2)学生独立画出缩小后的图形,指名投影展示。
3、归纳小结:图形的各边按相同的比放大或缩小后,只是大小发生了变化,形状没变。
4、学生独立完成书P57的“做一做”,交流是怎样思考与操作的,并及时纠正错误。
三、巩固练习
1、教科书P60练习九第1题,找出图形A放大后的图形。
2、教科书P60练习九第2题。
四、总结
图形的各边按相同的比放大或缩小后,只是大小发生了变化,形状没变。