在小学三年级的数学学习中,下册的知识点涵盖了多个重要的数学概念和解题方法。 这些知识点不仅为学生打下坚实的数学基础。以下是小编为大家收集的关于小学三年级下册数学知识点归纳的相关内容,供大家参考!
第一单元位置与方向
1、东与西相对,南与北相对。按顺时针方向转:东→南→西→北。
2、地图通常是按上北下南,左西右东绘制的。
3、八个方向:东、南、西、北、东南、东北、西南、西北。
第二单元除数是一位数的除法
1、笔算除法顺序:确定商的位数,试商,检查,验算。
2、基本规律:
(1)从高位除起,除到哪一位,就把商写在那一位;
(2)三位数除以一位数时百位上够除,商就是三位数;百位上不够除,商就是两位数;(位不够除,就看两位上商。)
(3)哪一位有余数,就和后面一位上的数合起来再除;
(4)哪一位上不够商1,就添0占位;每一次除得的余数一定要比除数小。
3、除法用乘法来验算
没有余数的除法:有余数的除法:
被除数÷除数=商被除数÷除数=商……余数
商×除数=被除数商×除数+余数=被除数
4、0除以任何数(0除外)都等于0,0乘任何数都得0,
0加任何数都得任何数本身,任何数减0都得任何数本身。
5、2、3、5倍数的特点
2的倍数:个位上是2、4、6、8、0的数是2的倍数。
5的倍数:个位上是0或5的数是5的倍数。
3的倍数3的倍数:各个数位上的数字加起来的和是3的倍数,这个数就是3的倍数。
比如:462,4+6+2=12,12是3的倍数,所以462是3的倍数。
6、关于倍数问题:
两数和÷倍数和=1倍的数
两数差÷倍数差=1倍的数
例:已知甲数是乙数的5倍,甲乙两数的和是24,求甲乙两数?
分析:这里把乙数看成1倍的数,那甲数就是5倍的数。它们加起来就相当于乙数的6倍了,而它们加起来的和是24。这也就相当于说乙数的6倍是24。所以乙数为:24÷6=4,甲数为:4×5=20
同样:若已知甲数是乙数的5倍,甲乙两数之差是24,求甲乙两数?
分析:这里把乙数看成1倍的数,那甲数就是5倍的数。它们的差就相当于乙数的4倍了,而它们的差是24。这也就相当于说乙数的4倍是24。所以乙数为:24÷4=6,甲数为:6×5=30
7、和差问题
(两数和—两数差)÷2=较小的数
(两数和+两数差)÷2=较大的数
例:已知甲乙两数之和是37,两数之差是19,求甲乙两数各是多少?
如图:
解析:如果给甲数加上“乙数比甲数多的部分(两数差)”(虚线部分),则由图知,甲数+两数差=乙数。如是:甲数+两数差+乙数=甲数+乙数+两数差=两数和+两数差
又有:甲数+两数差+乙数=乙数+乙数=乙数×2
知道:两数和+两数差=乙数×2(两数和+两数差)÷2=乙数
解:假设乙数是较大的数。乙:(37+19)÷2=28甲:28-19=9
8、锯木头问题。
王叔叔把一根木条锯成4段用12分钟,锯成5段需要多长时间?
如图,锯成4段只用锯3次,也就是锯3次要12分钟,那么可以知道锯一次要:12÷3=4(分钟)
而锯成5段只用锯4次,所需时间为:4×4=16(分钟)
9、巧用余数解决问题。
①÷8=6……,求被除数是,最小是。
根据除法中“余数一定要比除数小”规则,余数应是7,最小应是1。
再由公式:商×除数+余数=被除数,知道被除数应是6×8+7=55,最小应是6×8+1=49。
②少年宫有一串彩灯,按1红,2黄,3绿排列着,请你猜一猜第89个是什么颜色?
……
由图可知,彩灯一组为:1+2+3=6(个),照这样下去,89÷6=14(组)……5(个)第89个已经有像上面的这样6个一组14组,还多余5个;这5个再照1红,2黄,3绿排列下去,第5个就是绿色的了。
③加一份和减一份的余数问题。
例1:38个去划船,每条船限坐4个,一共要几条船?
38÷4=9(条)……2(人)余下的2人也要1条船,9+1=10条。
答:一共要10条船。
例2:做一件成人衣服要3米布,现在有17米布,能做几件成人衣服?
17÷3=5(件)……2(米)余下的2米布不能做一件成人衣服
答:能做5件成人衣服。
第三单元统计
1、求平均数公式:总和÷份数=平均数总数÷平均数=份数平均数×份数=总和
2、平均数能较好地反映一组数据的总体情况
3、通常条形统计图能描述一组数据中不同样本之间的差异,
折线统计图能描述一组数据的变化趋势,扇形统计图能描述一组数据占总体的百分比。
4、条形统计图中,一定要看清楚一格表是多少个单位,是表示1、2、5、10或更多单位。
第四单元年、月、日
1、重要日子:1949年10月1日,中华人民共和国成立;
1月1日元旦节;3月12日植树节;
5月1日劳动节;6月1日儿童节;
7月1日建党节;8月1日建军节;
9月10日教师节;10月1日国庆节。
2、一年有十二个月,1、3、5、7、8、10、12这七个月是31天,4、6、9、11这四个月是30天,平年2月是28天,闰年2月是29天,平年全年有365天,闰年全年有366天。
3、一年分四季,每3个月为一季;一、二、三月是第一季度,四、五、六月是第二季度,七、八、九月是第三季度,十、十一、十二是第四季度。
4、公历年份是4的倍数一般都是闰年,但公历年份是整百数的,必须是400的倍数才是闰年。如1900年不是闰年而是平年,而20__年是闰年。
5、推算星期几的方法例:已知今天星期三,再过50天星期几?
解析:因为一个星期是七天,那么由50÷7=7(星期)……1(天),知道50天里有7个星期多一天,所以第50天是星期四。
6、24时表示法:超过下午1时的时刻用24时计时法表示就是把原来的时刻加上12。反过来要把24时计时法表示的时刻表示成普通计时法的时刻,超过13时的时刻就减12,并加上下午、晚上等字在时刻前面。比如下午3时→3+12=15时,16时:16-12=下午4时。
5、计算经过时间,就是用结束时刻减开始时刻。比如10:00开始营业,22:00结束营业,营业时间为:22:00—10:00=12(小时)结束时刻—开始时刻=时间段
6、常用的时间单位有:年、月、日、时、分、秒。
7、时间单位进率:1世纪=100年,1年=12个月,1日=24小时,1小时=60分钟,1分钟=60秒钟
第五单元两位数乘两位数
1、口算乘法:整十、整百的数相乘,只需把0前面的数字相乘,再看两个因数一共有几个0,就在结果后面添上几个0。
如:30×500=15000可以这样想,3×5=15,两个因数一共有3个0,在所得结果15后面添上3个0就得到30×500=15000
2、笔算乘法:先把第一个因数同第二个因数个位上的数相乘,再与第二个因数十位上的数相乘(积与十位对齐),最后把两个积加起来。
3、几个特殊数:25×4=100,125×8=1000
4、相关公式:因数×因数=积积÷因数=另一个因数
第六单元面积
1、物体的表面或封闭图形的大小,就是它们的面积。封闭图形一周的长度,是它的周长。
2、比较两个图形面积的大小,要用统一的面积单位来测量。
3、①边长1厘米的正方形,面积是1平方厘米;
②边长1分米的正方形,面积是1平方分米。
③边长1米的正方形,面积是1平方米。
4、长方形的面积=长×宽正方形的面积=边长×边长
长方形的周长=(长+宽)×2正方形的周长=边长×4
已知长方形的面积求长:长=面积÷宽已知正方形的周长求边长:边长=面积÷4
已知长方形的周长求长:长=周长÷2-宽
5、面积单位之间的进率长度单位之间的进率
1平方分米=100平方厘米1分米=10厘米
1平方米=100平方分米1米=10分米
1公顷=10000平方米1千米=1000米
1平方千米=100公顷
6、周长相等的两个长方形,面积不一定相等。面积相等的两个长方形,周长也不一定相等。
第七单元小数的.初步认识
1、把1平均分成10份,每份是它的十分之一,也就是0.1。
2、比较两个小数的大小,先比较小数的整数部分,整数部分大的数就大,如果整数部分相同就比较小数的小数部分,小数部分要从小数点后位比起。
3、计算小数加、减法时,一定要先对齐小数点再相加、减。
第八单元解决问题
目标:进一步经历解决问题的过程,熟练应用两步计算解决问题。感受解决问题的策略多样化。
正确分析数量关系,明确解决问题的思考过程。
1、用乘法计算的两步应用题,也就是我们常说的连乘应用题,它可以用两种思路来解答;
如课本99页例题1,可以先求3个方阵一共有多少行,也可以先求一个方阵有多少人,每一步都用乘法计算。
2、用除法计算的两步应用题,也就是我们常说的连除应用题,它也可以用两种思路来解答;
如课本100页的例题2,可以先求一个大圈的人数,再求出问题所问,这种思路的每一步都用除法计算;也可以先求一共有多少个小圈,而这一步是用乘法计算,第二步再用除法计算。
3、另外还有乘加、乘减应用题,这类应用题没有固定的模式,需要具体问题具体分析;
具体分析方法可参考数学大本34页的分析方法。
4、解答应用题不管有几种思路,都要明白每种思路的第一步求的是什么,第二步又要求什么,
只有这样才算真正明白了题意。
第九单元数学广角
目标:
1、体会集合的数学思想方法。集合理论是数学的基础。
分类思想和方法实际上就是集合理论的基础。两个圆是集合圈。
2、体会等量代换数学的思想方法。
等量代换是指一个量用与它相等的量去代替,它是数学中一种基本的思想方法。等量代换思想用等式的性质来体现就是等式的传递性:如果a=b,b=c,那么a=c。
除数是一位数的除法
(一)口算除法
1.整千、整百、整十数除以一位数的口算方法。
(1)用表内除法计算:先用被除数0前面的数除以一位数,算出结果后,再看被除数的末尾有几个0,就在算出的结果后添几个0。
(2)用乘法来算除法:看一位数乘多少等于被除数,乘的数就是所求的商。
2.三位数除以一位数的估算方法。
(1)除数不变,把三位数看成几百几十或整百的数,再用口算除法的基本方法计算。
(2)想口诀估算:想一位数乘几最接近或等于被除数的最高位或前两位,那么几百或几十就是所要估算的商。
(二)笔算除法
1.牢固掌握两位数除以一位数、三位数除以一位数的笔算方法、步骤与格式,尤其是商中间、末尾有0的笔算算式的写法。
(除数是一位数的计算法则,除数是一位数,从被除数的高位除起,先除被除数的前一位,如果不够除,再除被除数的前两位,除到被除数的哪一位,商就写到被除数那一位的上面。除到被除数的哪一位不够商1,用0占位。每一次除得的余数必须比除数小。)
2.会判断商是几位数。
比较除数与被除数最高位的大小,如果被除数最高位上的数比除数小,那么商一定比被除数少一位;如果被除数最高位上的数比除数大或相等,那么商和被除数的位数相等。
3.除法的验算方法:
(1)没有余数的除法:商除数=被除数;
(2)有余数的除法:商除数+余数=被除数;
4.关于0的一些规定:
(1)0不能作除数。
(2)相同的两个数相除商是1。(既然能相除这个数就不是0)
(3)0除以任何不是0的数都得0;0乘任何数都得0。
5.乘除法的估算:4舍5入法。
如乘法估算:81685600,就是把81估成80,68估成70,80乘70得5600。
除法估算:493860,就是把493估成480(480是8的倍数,也最接进492),然后再口算4808得60。
第一单元:位置与方向
(一)认识东、南、西、北
1、自己动手制作一个“方向盘”,即在一张纸上,画上“十”字,按上北下南、左西右东标好
(西-+-东);
2、面朝南时,转动方向盘,将南对准前面,即:东-+-西,面朝东时,方向盘定为:北-+-南。
(二)认识东南、东北、西南、西北
(三)人教版小学三年级下册数学知识点大全:确定中心,找方位--解决这类题目的关键是找准以谁为中心。
第二单元:除数是一位数的除法
1、除数是一位数的笔算除法,先用被除数的最高位除以除数,再依次类推,用每一位上的数分别和除数相除,除到哪一位就把商写在那一位的上面。
2、要将前一步计算后的余数写出来和下一步的数合起来再除。
3、每次计算后的余数都要同除数进行比较,不要忘了“余数要比除数小”.
4、如果被除数的最高位比除数小,则商的位数比被除数的位数少1位。
5、如果被除数的最高位大于或等于除数,则商的位数同被除数的位数相同。
6、学会用乘法验算除法:
(A)没有余数的除法:商×除数=被除数
(B)有余数的除法:商×除数+余数=被除数
速算绝招:
(A)60 / 3=『』,可以把60看成6个十,6除以3得2,所以6个十除以3得2个十,即20.
(B)240 / 4=『』,可以把240看成是由200和40组成的,百位上不够商1,就把240看成24个十,因为24除以4得6,所以24个十除以4得6个十,即60.
第三单元:统计
(一)简单的数据分析:在画条形图时要先利用格尺找准数量,做好标记后再画。
(二)求平均数用移多补少的方法:
平均数 = 总数量 / 总份数
总数量 = 平均数 × 总份数
总份数 = 总数量 / 平均数
第四单元:年、月、日
1、一年有12个月:一、三、五、七、八、十、十二月是大月,有31天;四、六、九、十一月是小月,有30天;二月平年有28天,闰年有29天。
2、全年天数:平年有365天,闰年有366天。
3、判断平年、闰年:A)年份能被4除尽而没有余数的是闰年,有余数的为平年;
B)整百整千的年份要能被400除尽才是闰年。
4、比年大的时间单位是世纪,1世纪=100年。
5、用24时计时法表示:A)上午时间直接读出钟面上时间即可;
B)下午的时间在钟面上所指时间的基础上加上12小时。
6、时间单位的换算关系:1小时=60分,1分=60秒,1刻=15分,一昼夜=24小时,1周=7天。7、经过的天数的计算分为三种情况:(A)头尾都算:结束时间-开始时间+1
(B)头尾都不算:结束时间-开始时间-1
(C)头尾算其一:结束时间-开始时间。
第五单元:两位数乘两位数
1、 两位数乘两位数乘法估算,只需注意在估算时,要先根据“四舍五入”法分别求出两个因数的近似数,使其变成整十整百数后,再估算。
2、 再书写估算结果时,不要忘了“两个因数末尾有几个0,就在积的末尾写几个0”.
3、0和任何数相乘都得0.
速算绝招:
(A)60×20=『』,把60×20看作60乘2,得120,20是2的10倍,再将得数扩大10倍得1200,心算过程是60×2=120,2的后面有一个0,积120后面加一个0,得1200.
(B)估算时,把一个两位数看成是整十数进行估算,如39×40,把39看成40,40×40=1600,39×40~1600.51×30=『』,估算过程是50×30=1500,51×30~1500.
(C)35×11+『』,把35乘10得350,再用35×1=35,350+35=385,心算过程是:35×11=350+35=385,又如43×11=430+43=473.
(D)23×19=『』,把19看作20来乘,多乘龙1个23,再减去23,心算过程是:23×20-23=460-23=437,如45×21=『』,把21看作20来乘,少乘1个45,再加上45,45×20+45=900+45=945.
(E)34×15=『』,把34×10后再加34×5,因为34×5=34×10 / 2=340 / 2=170,所以34×15的心算过程是:340+340 / 2=340+170=510.
第六单元:面积
(一)面积和面积单位:
1、要弄清长度单位与面积单位的联系与区别;
2、 要认真审题,弄清题目要求后再做。
(二)长方形、正方形面积的计算:
1、正方形:(A)周长=边长×4--使用长度单位
(B)面积=边长×边长--使用面积单位
2、长方形:(A)周长=(长+宽)×2--使用长度单位
(B)面积=长×宽--使用面积单位
(三)面积单位间的进率
1、长度单位:米、分米、厘米--进率是10;1米=10分米=100厘米=1000毫米
2、面积单位:平方厘米、平方分米、平方米--进率是100;
1平方米=100平方分米,1平方分米=100平方厘米,1平方米=10000平方厘;
3、“公顷”(测量菜地面积、果园面积)和“平方千米”(测量城市土地面积)是用来测量土地的更大的面积单位;
4、质量单位:克(g)、千克(kg,也叫公斤)、吨(t)。1000克=1千克,1000千克=1吨。
5、计量路程或测量铁路、河流等比较长的物体时,一般用千米(km)作单位,又叫公里。(四)各图形的特点:长方形的特点:对边相等,四个角都是直角;
正方形的特点:四条边相等,四个角都是直角;
平行四边形的特点:两组对边平行且相等。
第七单元:小数的初步认识
(一)认识小数:分母为10的分数可以转化为一位小数,分母为100的分数可以转化为两位小数……
(二)小数大小的比较:在比较一位小数的大小时,可以把它们转化成分数或整数进行比较;(三)只有在分母相同的情况下,两个分数才能相加减,同分母分数加减法:分母不变,分子相加减;
(四)计算小数加、减法,首先要把小数点对齐,即相同数位对齐,从低位算起,同整数加、减法相同的是相加满十要向前一位进一,不要忘了在结果上点上小数点。
(一)年、月、日
1、常用的时间单位有:(年、月、日)和(时、分、秒)。
2、重要的日子:1949年10月1日,中华人民共和国成立。
1月1日元旦节、3月12日植树节,5月1日劳动节,6月1日儿童节,7月1日建党节,8月1日建军节,9月10日教师节,10月1日国庆节
3、熟记每个月的天数:知道大月一个月有31天,小月一个月有30天。平年二月28天,闰年二月29天,二月既不是大月也不是小月。一年有12个月(7大4小1特殊)
可借助歌谣记忆:
一、三、五、七、八、十、腊(即十二月),
三十一天永不差。
四六九冬三十天,只有二月二十八。
每逢四年闰一日,一定要在二月加。
4、熟记全年天数:平年2月28天,闰年2月29天。平年365天,闰年366天。上半年多少天(平年181天,闰年182天),下半年多少天(所有年份都是184天)。
(1)季度:(一年分四季度,每3个月为一个季度)
一、二、三月是 第一季度(平年有90天,闰年有91天),
四、五、六月是 第二季度(有91天),
七、八、九月是 第三季度(92天),
十、十一、十二月是 第四季度(有92天)。
(2)会计算每个季度有多少天,连续几个月共有多少天。连续两个月共62天的是:7月和8月,12月和第二年的1月;一年中连续两个月共62天的是:7月和8月。
(3)给出一个天数会计算有几个星期零几天。
如:第三季度有(92)天,有(13 )个星期零( 1)天。平年全年有(365)天,是(52 )个星期零(1)天。
(4)公历年份是4的倍数的一般都是闰年:一般情况下可以用年份除以4的方法判断平年闰年。年份除以4有余数是平年,没有余数是闰年。
如:1978÷4=494……2,1978年是平年。
1988÷4=497,1988年是闰年。
(5)公历年份是整百数的必须是400的倍数才是闰年。
如1900年是平年,2000年是闰年。
5、经过的天数的计算:
公式:结束时间—开始时间 + 1
例如:6月12到8月17日是多少天?
6月12日~~6月30日 30-12+1=9(天)
7月有:31(天) 8月1日~~8月17日 有:17(天)
9+31+17=57(天)
6、给出一个人出生的年份,会计算这个人多少周岁;给出一个人的年龄会计算他是哪一年出生的。
如:小华1994年6月出生,到今年6月(15岁)。小华今年12岁,他是(1997年)出生的。
7、通常每4年里有( 1 )个闰年, ( 3 )个平年。
(如果说某个人不是每年都能过到生日,8岁过两次生日,12岁过3次生日,那么他的生日就是2月29日。)
8、推算星期几的方法:
例如:已知今天星期三,再过50天星期几?
解析:因为一个星期是七天,那么由50÷7=7(星期)……1(天),知道50天里有7个星期多一天,所以第50天是星期三往后数一天,即星期四。
9、会计算到今年经过的年份:就用2013 - 给的年份
例如:中华人民共和国成立于1949年10月1日,到今年建国多少周年?
熟记中华人民共和国建国的时间是1949年10月1日;
算式:2013-1949=64(年)
(二) 24计时法
1、普通计时法又叫12时计时法,就是把一天分成两个12时表示,普通计时法一定要加上“上午”、“下午”等前缀。(如凌晨3时、早上8时、上午10时、下午2时、晚上8时)
2、24时计时法:就是把一天分成24时表示,在表示的时间前可以加或可以不加表示的大概时间段得词语。
3、普通计时法转换成24时计时法时,超过下午1时的时刻用24时计时法表示就是把原来的时刻加上12。
如:
普通计时法 24时计时法
上午9时 === 9时或9:00
晚上9时 === 21时或21:00
4、反过来要把24时计时法表示的时刻表示成普通计时法的时刻,超过13时的时刻就减12,并加上下午,晚上等字在时刻前面。
比如:16时等于16 - 12 = 下午4时。(必须加前缀)
5、计算经过时间,就是用结束时刻减开始时刻。
结束时刻-开始时刻=时间段(经过时间)
比如:10:00开始营业,22:00结束营业,
营业时间为:22:00—10:00=12(小时)
★(计算经过时间时,一定把不同的计时法变成相同的计时法再计算)
比如:某商品早上8:00开始营业,下午6:00停止营业,一天营业多少时间?
下午6:00=18:00 18:00 - 8:00 = 10(小时)
6、认识时间与时刻的区别:(时间是一段,时刻是一个点)
如:火车11:00出发,21时30分到达,火车运行时间是(10时30分),注意不要写成(10:30)。
正确的列式格式为:21时30分-11时=10时30分,不能用电子表的形式相减。
再如:火车19时出发,第二天8时到达,火车运行时间是(13小时)。像这种跨越两天的,可以先计算第一天行驶了多长时间:24-19=5(时),再加上第二天行驶的8个小时:5+8=13(时)
又如:一场球赛,从19时30分开始,进行了155分钟,比赛什么时候结束?先换算,155分=2时35分,再计算。
7、会根据给出的信息制作月历和年历。如:某年8月1日是星期二,制作8月份的月历。再如:某年4月30日是星期
四,制作5月份月历。
制作年历步骤:
第一:确定1月1日是星期几;
第二:确定12个月怎样排列,
第三:把休息日用另外的颜色标出来。
8、时间单位进率:
1世纪=100年
1年 =12个月
1天(日)=24小时
1小时=60分钟
1分钟=60秒钟
1周=7天